Skip to main content Accessibility help

Shooting method for vortex solutions of a complex-valued Ginzburg–Landau equation

  • Xinfu Chen (a1), Charles M. Elliott (a2) and Tang Qi (a2)


In this paper, we study all the stationary solutions of the form u(r)einθ to the complex-valued Ginzburg–Landau equation on the complex plane: here (r, θ) are the polar coordinates, and n is any real number. In particular, we show that there exists a unique solution which approaches to a nonzero constant as r → ∞.



Hide All
1Berger, M. S. and Chen, Y. Y.. Symmetric vortices for the Ginzburg-Landau equations of superconductivity and the nonlinear desingularization phenomenon. J. Fund. Anal. 82 (1989), 259295.
2Bethuel, F., Brezis, H. and Helein, F.. Limite singuliere pour la minimisation de fonctionnelles du type Ginzburg-Landau. C. R. Acad. Sci. Paris Ser. 1 Math. 314 (1992), 891895.
3Elliott, C. M., Matano, H. and Tang, Qi. Zeros of a complex Ginzburg-Landau order parameter with applications to superconductivity. European J. Appl. Math, (to appear).
4Greenberg, J. M.. Spiral waves for A-co systems. SIAM J. Appl. Math. 39 (1980), 301309.
5McLeod, J. B., Stuart, C. A. and Troy, W. C.. An exact reduction of Maxwell's equation. In Progress in Nonlinear Differential Equations: Nonlinear Diffusion Equations and Their Equilibrium States, 3, eds Lloyd, N. G., Ni, W. M., Peletier, L. A. and Serrin, J., 391405 (Boston: Birkhauser, 1992).
6McLeod, K. and Serrin, J.. Uniqueness of positive radial solutions of Δu + f(U) = 0 in Rn. Arch. Rational Mech. Anal. 99 (1987), 115145.
7McLeod, K., Troy, W. C. and Weissler, F. B.. Radial solutions of Δu + f(u) = 0 with prescribed number of zeros. J. Differential Equations (to appear).
8Neu, J. C.. Vortices in complex scalar fields. Phys. D 43 (1990), 385406.
9Peres, L. and Rubinstein, J.. Vortex dynamics in U(l) Ginzburg-Landau models, Phys. D 64 (1993), 299309.
10Pisman, L. M. and Rubinstein, J.. Motion of vortex lines in the Ginzburg-Landau model (preprint).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed