Skip to main content Accessibility help

Quasiconvex relaxation of isotropic functions in incompressible planar hyperelasticity

  • Robert J. Martin (a1), Jendrik Voss (a1), Patrizio Neff (a1) and Ionel-Dumitrel Ghiba (a2)


In this note, we provide an explicit formula for computing the quasiconvex envelope of any real-valued function W; SL(2) → ℝ with W(RF) = W(FR) = W(F) for all F ∈ SL(2) and all R ∈ SO(2), where SL(2) and SO(2) denote the special linear group and the special orthogonal group, respectively. In order to obtain our result, we combine earlier work by Dacorogna and Koshigoe on the relaxation of certain conformal planar energy functions with a recent result on the equivalence between polyconvexity and rank-one convexity for objective and isotropic energies in planar incompressible nonlinear elasticity.



Hide All
1Abeyaratne, R.. Discontinuous deformation gradients in plane finite elastostatics of incompressible materials. J. Elast. 10, (1980), 255293.10.1007/BF00127451
2Alibert, J.-J. and Dacorogna, B.. An example of a quasiconvex function that is not polyconvex in two dimensions. Arch. Ration. Mech. Anal. 117 (1992), 155166.10.1007/BF00387763
3Aubert, G.. Necessary and sufficient conditions for isotropic rank-one convex functions in dimension 2. J. Elast. 39 (1995), 3146.10.1007/BF00042440
4Ball, J. M.. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63 (1976), 337403.10.1007/BF00279992
5Ball, J. M.. Constitutive inequalities and existence theorems in nonlinear elastostatics. In Nonlinear analysis and mechanics: Heriot-Watt symposium (ed.Knops, R.), vol. 1, pp. 187241 (Boston: Pitman Publishing Ltd., 1977).
6Buttazzo, G., Dacorogna, B. and Gangbo, W.. On the envelopes of functions depending on singular values of matrices. Bollettino dell'Unione Matematica Italiana, VII. Ser., B 8 (1994), 1735.
7Conti, S.. Quasiconvex functions incorporating volumetric constraints are rank-one convex. Journal de Mathématiques Pures et Appliquées 90 (2008), 1530.10.1016/j.matpur.2008.04.009
8Conti, S. and Hackl, K.. Analysis and computation of microstructure in finite plasticity, vol. 78 (Switzerland: Springer, 2015).
9Dacorogna, B.. Direct methods in the calculus of variations, 2nd edn, Applied Mathematical Sciences, vol. 78 (Berlin: Springer, 2008).
10Dacorogna, B. and Haeberly, J.-P.. Some numerical methods for the study of the convexity notions arising in the calculus of variations. ESAIM: Mathematical Modelling and Numerical Analysis 32 (1998), 153175.10.1051/m2an/1998320201531
11Dacorogna, B. and Koshigoe, H.. On the different notions of convexity for rotationally invariant functions. Annales de la faculté des sciences de Toulouse: Mathématiques 2 (1993), 163184.10.5802/afst.762
12Dacorogna, B. and Marcellini, P.. A counterexample in the vectorial calculus of variations. In Material instabilities in continuum mechanics (ed.Ball, J. M.), pp. 7783 (USA: Oxford Science Publications, 1988).
13Dunn, J. E., Fosdick, R. and Zhang, Y.. Rank 1 convexity for a class of incompressible elastic materials. In Rational continua, classical and new: a collection of papers dedicated to Gianfranco Capriz on the occasion of his 75th birthday (eds Podio-Guidugli, P. and Brocato, M.), pp. 8996 (Milano: Springer Milan, 2003).10.1007/978-88-470-2231-7_7
14Fosdick, R. and MacSithigh, G.. Minimization in incompressible nonlinear elasticity theory. J. Elast. 16 (1986), 267301.10.1007/BF00040817
15Ghiba, I.-D., Neff, P. and Šilhavỳ, M.. The exponentiated Hencky-logarithmic strain energy. Improvement of planar polyconvexity. Int. J. Non. Linear. Mech. 71 (2015), 4851, doi: 10.1016/j.ijnonlinmec.2015.01.009
16Ghiba, I.-D., Martin, R. J. and Neff, P.. Rank-one convexity implies polyconvexity in isotropic planar incompressible elasticity. Journal de Mathématiques Pures et Appliquées 116 (2018), 88104.10.1016/j.matpur.2018.06.009
17Hencky, H.. Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen. Zeitschrift für technische Physik 9 (1928), 215220, available at
18Hencky, H.. Welche Umstände bedingen die Verfestigung bei der bildsamen Verformung von festen isotropen Körpern?. Zeitschrift für Physik 55 (1929), 145155, available at
19Kinderlehrer, D., James, R., Luskin, M. and Ericksen, J. L.. Microstructure and phase transition, vol. 54 (Berlin, Germany: Springer Science & Business Media, 2012).
20Knowles, J. K. and Sternberg, E.. On the failure of ellipticity of the equations for finite elastostatic plane strain. Arch. Ration. Mech. Anal. 63 (1976), 321336.10.1007/BF00279991
21Knowles, J. K. and Sternberg, E.. On the failure of ellipticity and the emergence of discontinuous deformation gradients in plane finite elastostatics. J. Elast. 8 (1978), 329379.10.1007/BF00049187
22Le Dret, H. and Raoult, A.. The quasiconvex envelope of the Saint Venant–Kirchhoff stored energy function. Proceedings of the Royal Society of Edinburgh Section A: Mathematics 125 (1995), 11791192.10.1017/S0308210500030456
23Martin, R. J., Ghiba, I.-D. and Neff, P.. Rank-one convexity implies polyconvexity for isotropic, objective and isochoric elastic energies in the two-dimensional case. Proceedings of the Royal Society Edinburgh A 147A (2017), 571597, available at arXiv:1507.00266.10.1017/S0308210516000275
24Martin, R. J., Voss, J., Ghiba, I.-D., Sander, O. and Neff, P.. The quasiconvex envelope of conformally invariant planar energy functions in isotropic hyperelasticity. submitted (2018), available at arXiv:1901.00058.
25Mielke, A.. Necessary and sufficient conditions for polyconvexity of isotropic functions. J. Convex. Anal. 12 (2005), 291.
26Neff, P., Lankeit, J., Ghiba, I.-D., Martin, R. J. and Steigmann, D. J.. The exponentiated Henckylogarithmic strain energy. Part II: coercivity, planar polyconvexity and existence of minimizers. Zeitschrift für angewandte Mathematik und Physik 66 (2015), 16711693, doi: 10.1007/s00033-015-0495-0
27Neff, P., Eidel, B. and Martin, R. J.. Geometry of logarithmic strain measures in solid mechanics. Arch. Ration. Mech. Anal. 222 (2016), 507572, available at arXiv:1505.02203. doi: 10.1007/s00205-016-1007-x
28Rosakis, P. and Simpson, H. C.. On the relation between polyconvexity and rank-one convexity in nonlinear elasticity. J. Elast. 37 (1994), 113137.10.1007/BF00040941
29Šilhavỳ, M.. The mechanics and thermodynamics of continuous media. Texts and Monographs in Physics (Berlin, Germany: Springer, 1997).10.1007/978-3-662-03389-0
30Šilhavỳ, M.. Rank 1 convex hulls of isotropic functions in dimension 2 by 2. Mathematica Bohemica 126 (2001), 521529.


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed