Skip to main content Accessibility help

Products of nilpotent linear transformations

  • R. P. Sullivan (a1)


In this paper we characterise the linear transformations of an infinite-dimensional vector space that can be written as the product of nilpotent transformations. This and a linear version of Malcev's congruence on transformation semigroups are then used to construct a new class of congruence-free semigroups.



Hide All
1Clifford, A. H. and Preston, G. B.. The Algebraic Theory of Semigroups, Math. Surveys 7 (Providence, R.I.: American Mathematical Society, Vol. 1, 1961; Vol. 2, 1967).
2Hannah, J. and O'Meara, K.. Depth of idempotent-generated semigroups of a regular ring. Proc. London Math. Soc. 59 (1989), 464482.
3Howie, J. M.. The subsemigroup generated by the idempotents of a full transformation semigroup. J. London Math. Soc. 41 (1966), 707716.
4Howie, J. M.. An Introduction to Semigroup Theory (London: Academic Press, 1976).
5Howie, J. M. and Paula, M.Marques-Smith, O.. Inverse semigroups generated by nilpotent transformations. Proc. Roy. Soc. Edinburgh Sect. A 99 (1984), 153162.
6Howie, J. M. and Paula, M.Marques-Smith, O.. A nilpotent-generated semigroup associated with a semigroup of full transformations. Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), 181187.
7Jacobson, N.. Lectures in Abstract Algebra, Vol. II (New York: Van Nostrand, 1953).
8Kothe, G.. Topological Vector Spaces, Vol. 1 (Berlin: Springer, 1969).
9Paula, M.Marques, O.. A congruence-free semigroup associated with an infinite cardinal number. Proc. Roy. Soc. Edinburgh Sect. A 93 (1983), 245257.
10Reynolds, M. A. and Sullivan, R. P.. The ideal structure of idempotent-generated transformation semigroups. Proc. Edinburgh Math. Soc. 28 (1985), 319331.
11Reynolds, M. A. and Sullivan, R. P.. Products of idempotent linear transformations. Proc. Roy. Soc. Edinburgh Sect. A 100 (1985), 123138.
12Saronova, T. N.. Congruences on semigroups of linear operators. Dokl. Akad. Nauk Ukrain. SSR Ser. A (1979) (1), 1719.
13Scheiblich, H. E.. Concerning congruences on symmetric inverse semigroups. Czech. Math. J. 23 (98) (1973), 110.
14Schein, B. M.. Homomorphisms and subdirect decompositions of semigroups. Pacific J. Math. 17 (1966), 529547.
15Sierpinski, W.. Cardinal and Ordinal Numbers (Warsaw: Panstwowe Wydawnictwo Naukowe, 1958).
16Sullivan, R. P.. Semigroups generated by nilpotent transformations. J. Algebra 110 (1987), 324343.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed