Skip to main content Accessibility help
×
Home

A priori bounds and existence of non-real eigenvalues for singular indefinite Sturm–Liouville problems with limit-circle type endpoints

  • Fu Sun (a1) and Jiangang Qi (a1)

Abstract

The present paper deals with non-real eigenvalues of singular indefinite Sturm–Liouville problems with limit-circle type endpoints. A priori bounds and the existence of non-real eigenvalues of the problem associated with a special separated boundary condition are obtained.

Copyright

References

Hide All
1Atkinson, F. and Jabon, D.. Indefinite Sturm–Liouville problems, In Proceedings of the Focused Research Program on Spectral Theory and Boundary Value Problems (eds. Kaper, H., Kwong, M. K. and Zettle, A.). vol. I, pp. 3145 (Argonne, IL: Argonne National Laboratory, 1984).
2Behrndt, J. and Trunk, C.. On the negative squares of indefinite Sturm–Liouville operators. J. Diff. Equ. 238 (2007), 491519.
3Behrndt, J., Katatbeh, Q. and Trunk, C.. Non-real eigenvalues of singular indefinite Sturm–Liouville operators. Proc. Amer. Math. Soc. 137 (2009), 37973806.
4Behrndt, J., Philipp, F. and Trunk, C.. Bounds on the non-real spectrum of differential operators with indefinite weights. Math. Ann. 357 (2013), 185213.
5Behrndt, J., Chen, S., Philipp, F. and Qi, J.. Estimates on the non-real eigenvalues of regular indefinite Sturm–Liouvilleproblems. Proc. Roy. Soc. Edinburgh, A 144 (2014), 11131126.
6Behrndt, J., Schmitz, P. and Trunk, C.. Bounds on the non-real spectrum of a singular indefinite Sturm–Liouville operator on ℝ. Proc. Appl. Math. Mech. 16 (2016), 881882.
7Behrndt, J., Schmitz, P. and Trunk, C.. Spectral bounds for singular indefinite Sturm–Liouville operators with L 1-potentials, arXiv: 1709.04994v2 [math.SP] 18 December 2017.
8Binding, P. and Volkmer, H.. Eigencurves for two-parameter Sturm–Liouville equations. SIAM Review 38 (1996), 2748.
9C̆urgus, B. and Langer, H.. A Krein space approach to symmetric ordinary differential operators with an indefinite weight functions. J. Diff. Equ. 79 (1989), 3161.
10Fleckinger, J. and Mingarelli, A. B.. On the eigenfunctions of non-definite elliptic operators, In Differential equations. (eds. Knowles, I. W. and Lewis, R. T.). 92,pp. 219227 (The Netherlands: North-Holland, 1984).
11Haupt, O.. Über eine Methode zum Beweis von Oszillationstheoremen. Math. Ann. 76 (1915), 67104.
12Kong, Q., Möller, M., Wu, H. and Zettl, A.. Indefinite Sturm–Liouville problems. Proc. Roy. Soc. Edinburgh, Sect. A 133 (2003), 639652.
13Kong, L., Kong, Q., Wu, H. and Zettl, A.. Regular approximations of singular Sturm–Liouville problems with limit-circle endpoints. Result. Math. 45 (2004), 274292.
14Mingarelli, A. B.. Indefinite Sturm–Liouville problems. Lecture Notes in Math., vol. 964,pp. 519528 (Berlin, New York: Springer, 1982).
15Mingarelli, A. B.. A survey of the regular weighted Sturm–Liouville problem – The non-definite case, arXiv:1106.6013v1 [math.CA], (2011).
16Niessen, H. D. and Zettl, A.. Singular Sturm–Liouville problem: the Friedrichs extension and comparison of eigenvalues. Proc. London Math. Soc. 64 (1992), 545578.
17Qi, J. and Chen, S.. A priori bounds and existence of non-real eigenvalues of indefinite Sturm–Liouville problems. J. Spectr. Theory 4 (2014), 5363.
18Qi, J., Xie, B. and Chen, S.. The upper and lower bounds on non-real eigenvalues of indefinite Strum-Liouville problems. Pro. Amer. Math. Soc. 144 (2016), 547559.
19Richardson, R. G. D.. Theorems of oscillation for two linear differential equations of second order with two parameters. Trans. Amer. Math. Soc. 13 (1912), 2234.
20Xie, B. and Qi, J.. Non-real eigenvalues of indefinite Sturm–Liouville problems. J. Diff. Equ. 8 (2013), 22912301.
21Zettl, A.. Sturm–Liouville theory. Math. Surveys Monogr., vol. 121 (Providence, RI: Amer. Math. Soc., 2005).

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed