Skip to main content Accessibility help

Periodic solutions of time-dependent, semilinear evolution equations of compact type

  • Herbert C. Sager (a1)


We establish the existence of solutions in a weak sense of

where t Є J = [0, T] and′ = d/dt. It is supposed that the unbounded, linear operators A(t) generate analytic and compact semigroups on a Hilbert space H and that B(t, x) are bounded linear operators. The function f(t, x) with values in H may have asymptotically sublinear growth.

We prove the existence of a periodic solution with the help of Schauder’s fixed point theorem.

Accordingly, we first verify that the corresponding linearized version of (0.1),

has a unique solution for each square integrable ψ(t), provided that the homogeneous problem has only the zero solution.



Hide All
1Amann, H.. Invariant sets and existence theorems for semilinear parabolic and elliptic systems. J. Math. Anal. Appl. 65 (1978), 432467.
2Anichini, G.. Nonlinear problems for systems of differential equations. Nonlinear Anal. 1 No. 6 (1977), 691699.
3Balakrishnan, A. V.. Applied Functional Analysis (New York: Springer, 1976).
4Ball, J. M.. Strongly continuous semigroups, weak solutions, and the variation of constants formula. Proc. Amer. Math. Soc. 63 (1977), 370374.
5Bates, P. W.. Hilbert space methods for nonlinear elliptic equations. J. Differential Equations 32 (1979), 250257.
6Becker, R. I.. Periodic solutions of semilinear equations of evolution of compact type. J. Math. Anal. Appl. 82 (1981), 3348.
7Conti, R.. Recent trends in the theory of boundary value problems for ordinary differential equations. Boll. Un. Mat. Ital. 22 (1967), 135178.
8Dunford, N. and Schwartz, J. T., Linear Operators, Vols I and II (New York: Interscience, 1958).
9Dunninger, D. R. and Levine, H. A.. Uniqueness criteria for solutions to abstract boundary value problems. J. Differential Equations 22 (1976), 368378.
10Kannan, R. and Locker, J.. On a class of nonlinear boundary value problems. J. Differential Equations 26 (1977), 18.
11Kartsatos, A. G.. Boundary value problems for abstract evolution equations. Nonlinear Anal. 3 (1979), 547554.
12Kato, T. and Tanabe, H.. On the abstract evolution equation. Osaka Math. J. 14 (1962), 107133.
13Krasnoselskii, M. A.. Topological Methods in the Theory of Nonlinear Integral Equations, (Oxford: Pergamon, 1964).
14Landesman, E. M. and Lazer, A. C.. Linear eigenvalues and a nonlinear boundary value problem. Pacific J. Math. 33 (1970), 311327.
15Laptev, G. I.. Eigenvalue problems for second-order differential equations in Banach and Hilbert spaces. Differencial'nye Uravnenija 2 (1966), 11511160.
16Lions, J. L.. Equations differentielles operationnelles (New York: Springer 1961).
17Martin, R. H.. Nonlinear operators and differential equations in Banach spaces (New York: Wiley-Interscience, 1976).
18Mawhin, J. and Ward, J. R.. Nonresonance and existence for nonlinear elliptic boundary value problems. Nonlinear Anal. 6 (1981), 677684.
19Opial, Z.. Linear problems for systems of nonlinear differential equations. J. Differential Equations 3 (1967), 580594.
20Pazy, A.. A class of semilinear equations of evolution. Israel J. Math. 20 (1975), 2336.
21Prüss, J.. Periodic solutions of semilinear evolution equations. Nonlinear Anal. 3 (1979), 601612.
22Tanabe, H.. Equations of Evolution. Monographs and studies in mathematics 6 (Belmont, U.S.A.: Pitman, 1979).
23Ward, J. R.. Semilinear boundary value problems in Banach space. In Nonlinear Equations in Abstract Spaces pp. 469477 (New York: Academic Press, 1978).
24Ward, J. R.. Periodic solutions of perturbed conservative systems. Proc. Amer. Math. Soc. 72 (1978), 281285.
25Ward, J. R.. Boundary value problems for differential equations in Banach space. J. Math. Anal. Appl. 70 (1979), 589598.
26Ward, J. R.. Asymptotic conditions for periodic solutions of ordinary differential equations. Proc. Amer. Math. Soc. 81 (1981), 415420.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed