Skip to main content Accessibility help
×
Home

Oscillation criteria for third order hyperbolic characteristic initial value problems

  • C. C. Travis (a1) and Norio Yoshida (a2)

Synopsis

Sufficient conditions for oscillation of solutions to third order hyperbolic characteristic initial value problems are established. The results generalize known oscillation criteria for second order hyperbolic problems.

Copyright

References

Hide All
1Kartsatos, A. G.. On nth order differential inequalities. J. Math. Anal. Appl. 52 (1975), 19.
2Kiguradze, I. T.. Oscillation properties of solutions of certain ordinary differential equations. Dokl. Akad. Nauk SSSR 144 (1962), 3336. (Russian) = Soviet Math. Dokl. 3 (1962), 649–652.
3Kreith, K.. Sturtnian theorems for characteristic initial value problems. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 47 (1969), 139144.
4Ličko, I. and Švec, M.. Le caractère oscillatoire des solutions de l'équation y(n) + f(x)y = 0, n > 1. Czechoslovak Math. J. 13 (1963), 481491.
5Mikusiński, J.. On Fite's oscillation theorems. Colloq. Math. 2 (1951), 3439.
6Okikiolu, G. O., Aspects of the Theory of Bounded Integral Operators in Lp-spaces (New York: Academic Press, 1971).
7Onose, H.. A comparison theorem and the forced oscillation. Bull. Austral. Math. Soc. 13 (1975), 1319.
8Pagan, G.. Oscillation theorems for characteristic initial value problems for linear hyperbolic equations. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 55 (1973), 301313.
9Pagan, G.. An oscillation theorem for characteristic initial value problems in linear hyperbolic equations. Proc. Roy. Soc. Edinburgh Sect. A 77 (1977), 265271.
10Pagan, G. and Stocks, D.. Oscillation criteria for second order hyperbolic initial value problems. Proc. Roy. Soc. Edinburgh Sect. A 83 (1979), 239244.
11Yoshida, N.. An oscillation theorem for characteristic initial value problems for nonlinear hyperbolic equations. Proc. Amer. Math. Soc. 76 (1979), 95100.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed