Skip to main content Accessibility help
×
Home

On pathological properties of fixed point algebras in Kirchberg algebras

  • Yuhei Suzuki (a1)

Abstract

We investigate how the fixed point algebra of a C*-dynamical system can differ from the underlying C*-algebra. For any exact group Γ and any infinite group Λ, we construct an outer action of Λ on the Cuntz algebra 𝒪2 whose fixed point algebra is almost equal to the reduced group C*-algebra ${\rm C}_{\rm r}^* (\Gamma)$ . Moreover, we show that every infinite group admits outer actions on all Kirchberg algebras whose fixed point algebras fail the completely bounded approximation property.

Copyright

References

Hide All
1Blackadar, B.. K-Theory for Operator Algebras, 2nd edn, vol. 5 (Berkeley, CA: Mathematical Sciences Research Institute Publications, 1998).
2Brown, N. P. and Ozawa, N.. C*-Algebras and Finite-Dimensional Approximations.Graduate Studies in Mathematics, vol. 88 (Providence, RI: American Mathematical Society, 2008).
3Connes, A.. Classification of injective factors. Cases II1, II, IIIλ, λ ≠ 1. Ann. Math. (2) 104 (1976), 73115.
4Cuntz, J.. Simple C*-algebras generated by isometries. Comm. Math. Phys. 57 (1977), 173185.
5Cuntz, J.. Dimension functions on simple C*-algebras. Math. Ann. 233 (1978), 145153.
6Cuntz, J.. K-theory for certain C*-algebras. Ann. Math. 113 (1981), 181197.
7Futamura, H., Kataoka, N. and Kishimoto, A.. Homogeneity of the pure state space for separable C*-algebras. Int. J. Math. 12 (2001), 813845.
8Haagerup, U.. Quasitraces on exact C*-algebras are traces. C. R. Math. Acad. Sci. Soc. R. Can. 36 (2014), 6792.
9Haagerup, U. and Kraus, J.. Approximation properties for group C*-algebras and group von Neumann algebras. Trans. Amer. Math. Soc. 344 (1994), 667699.
10Izumi, M.. Inclusions of simple C*-algebras. J. Reine Angew. Math. 547 (2002), 97138.
11Izumi, M.. Finite group actions on C*-algebras with the Rohlin property I. Duke Math. J. 122 (2004), 233280.
12Izumi, M. and Matui, H.. Poly-ℤ group actions on Kirchberg algebras I. To appear in Int. Math. Res. Not., arXiv:1810.05850.
13Izumi, M. and Matui, H.. Poly-ℤ group actions on Kirchberg algebras II. Preprint, arXiv:1906.03818.
14Kasparov, G.. Equivariant K K-theory and the Novikov conjecture. Invent. Math. 91 (1988), 147201.
15Kirchberg, E.. Commutants of unitaries in UHF-algebras and functorial properties of exactness. J. Reine Angew. Math. 452 (1994), 3977.
16Kirchberg, E.. The classification of purely infinite C*-algebras using Kasparov's theory. Preprint.
17Kirchberg, E. and Phillips, N. C.. Embedding of exact C*-algebras in the Cuntz algebra 𝒪2. J. Reine Angew. Math. 525 (2000), 1753.
18Kishimoto, A.. Outer automorphisms and reduced crossed products of simple C*-algebras. Comm. Math. Phys. 81 (1981), 429435.
19Kishimoto, A., Ozawa, N. and Sakai, S.. Homogeneity of the pure state space of a separable C*-algebra. Canad. Math. Bull. 46 (2003), 365372.
20Lafforgue, V. and de la Salle, M.. Noncommutative L p-spaces without the completely bounded approximation property. Duke Math. J. 160 (2011), 71116.
21Nakamura, H.. Aperiodic automorphisms of nuclear purely infinite simple C*-algebras. Ergodic Theory Dyn. Syst. 20 (2000), 17491765.
22Neumann, B. H.. Groups covered by permutable subsets. J. London Math. Soc. 29 (1954), 236248.
23Olesen, D. and Pedersen, G. K.. Applications of the Connes spectrum to C*-dynamical systems III. J. Funct. Anal. 45 (1981), 357390.
24Ozawa, N.. There is no separable universal II1-factor. Proc. Amer. Math. Soc. 132 (2004), 487490.
25Ozawa, N.. Weak amenability of hyperbolic groups. Groups Geom. Dyn. 2 (2008), 271280.
26Ozawa, N.. Examples of groups which are not weakly amenable. Kyoto J. Math. 52 (2012), 333344.
27Phillips, N. C.. A classification theorem for nuclear purely infinite simple C*-algebras. Doc. Math. 5 (2000), 49114.
28Pimsner, M. and Voiculescu, D.. K-groups of reduced crossed products by free groups. J. Operator Theory 8 (1982), 131156.
29Rørdam, M.. Classification of Nuclear, Simple C*-Algebras. Vol. 126 of Encyclopaedia Math. Sci.,pp. 1145 (Berlin: Springer, 2002).
30Rosenberg, J. and Schochet, C.. The Künneth theorem and the universal coefficient theorem for Kasparov's generalized K-functor. Duke Math. J. 55 (1987), 431474.
31Suzuki, Y.. Group C*-algebras as decreasing intersection of nuclear C*-algebras. Amer. J. Math. 139 (2017), 681705.
32Suzuki, Y.. Simple equivariant C*-algebras whose full and reduced crossed products coincide. To appear in J. Noncommut. Geom., arXiv:1801.06949.
33Suzuki, Y.. Complete descriptions of intermediate operator algebras by intermediate extensions of dynamical systems. To appear in Comm. Math. Phys., arXiv:1805.02077.
34Suzuki, Y.. Rigid sides of approximately finite dimensional simple operator algebras in non-separable category. To appear in Int. Math. Res. Not., arXiv:1809.08810.
35Szabó, G.. Equivariant Kirchberg-Phillips-type absorption for amenable group actions. Comm. Math. Phys. 361 (2018), 11151154.
36Watatani, Y.. Index for C*-subalgebras. Mem. Amer. Math. Soc. 424 (1990).

Keywords

MSC classification

On pathological properties of fixed point algebras in Kirchberg algebras

  • Yuhei Suzuki (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed