Skip to main content Accessibility help

A non-probabilistic approach to Poisson spaces

  • Alan L. T. Paterson (a1)


Using techniques from probability theory, it has been established that if μ is a probability measure on a separable, locally compact group, then the space of μ-harmonic functions on the group can be identified with C(X) for some compact, Hausdorff space X. The space X is known as the Poisson space of μ. We generalise this result in the context of a measure μ on a locally compact semigroup S, in particular establishing the existence of a Poisson space for non-separable groups. The proof is non-probabilistic, and depends on properties of projections on C(K)(K compact Hausdorff). We then show that if S is compact and the support of μ generates S, then the Poisson space associated with μ, is X, where X×G×Y is the Rees product representing the kernel of S.



Hide All
1Azencott, R.. Espaces de Poisson des groupes localement compacts. Lecture Notes in Mathematics 148 (Berlin: Springer, 1970).
2Bonsall, F. F. and Duncan, J.. Complete normed algebras (Berlin: Springer, 1973).
3Cartier, P.. Espaces de Poisson des groupes localement compacts. Séminaire Bourbaki No. 370 (19691970).
4Choi, M. D. and Effros, E. G.. Injectivity and operator spaces. J. Functional Analysis 24 (1977), 156209.
5Day, M. M.. Amenable semigroups. Illinois J. Math. 1 (1957), 509544.
6Furstenberg, H.. A Poisson formula for semisimple Lie groups. Ann. of Math. 77 (1963), 335386.
7Furstenberg, H.. Boundary theory and stochastic processes on homogeneous spaces, pp. 193229 of Harmonic Analysis on Homogeneous Spaces, Proceedings of Symposia in Pure Mathematics (Providence, R.I.: Ainer. Math. Soc, 1973).
8Furstenberg, H.. Random walks on Lie groups, pp. 467489 of Harmonic Analysis and Representations of Semisimple Lie groups (Dordrecht, Holland: D. Reidel, 1980).
9Kharaghani, H.. The evolution of bounded linear functionals with application to invariant means. Pacific J. Math. 78 (1978), 369374.
10Milnes, P.. Compactiiications of semitopological semigroups. J. Austral. Math. Soc. 15 (1973), 488503.
11Rosenblatt, M.. Markov Processes. Structure and Asymptotic Behavior (Berlin: Springer, 1971).
12Stinespring, W. F.. Positive functions on C*-algebras. Proc. Amer. Math. Soc. 6 (1955), 211216.
13Warner, G.. Harmonic Analysis on Semisimple Lie groups (Berlin: Springer, 1972).
14Wulbert, D. E.. Avenging projections. Illinois J. Math. 13 (1969), 689693.

A non-probabilistic approach to Poisson spaces

  • Alan L. T. Paterson (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.