Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T03:44:23.363Z Has data issue: false hasContentIssue false

Non-Hilbertian tangents to Hilbertian spaces

Published online by Cambridge University Press:  05 April 2022

Danka Lučić
Affiliation:
Università di Pisa, Dipartimento di Matematica, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy (danka.lucic@dm.unipi.it)
Enrico Pasqualetto
Affiliation:
Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126 Pisa, Italy (enrico.pasqualetto@sns.it)
Tapio Rajala
Affiliation:
University of Jyvaskyla, Department of Mathematics and Statistics, P.O. Box 35 (MaD), FI-40014 University of Jyvaskyla, Finland (tapio.m.rajala@jyu.fi)

Abstract

We provide examples of infinitesimally Hilbertian, rectifiable, Ahlfors regular metric measure spaces having pmGH-tangents that are not infinitesimally Hilbertian.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acerbi, E. and Buttazzo, G.. On the limits of periodic Riemannian metrics. J. Anal. Math. 43 (1983), 183201.CrossRefGoogle Scholar
Ambrosio, L.. Calculus, heat flow and curvature-dimension bounds in metric measure spaces. In Proceedings of the ICM 2018, vol. 1 (Singapore: World Scientific, 2019), pp. 301–340.CrossRefGoogle Scholar
Ambrosio, L., Gigli, N. and Savaré, G.. Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev. Mat. Iberoam. 29 (2013), 969996.10.4171/RMI/746CrossRefGoogle Scholar
Ambrosio, L., Gigli, N. and Savaré, G.. Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math. 195 (2014), 289391.10.1007/s00222-013-0456-1CrossRefGoogle Scholar
Ambrosio, L., Gigli, N. and Savaré, G.. Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J. 163 (2014), 14051490.10.1215/00127094-2681605CrossRefGoogle Scholar
Aubry, E.. Finiteness of $\pi _1$ and geometric inequalities in almost positive Ricci curvature. Ann. Sci. École Norm. Sup. 40 (2007), 675695.10.1016/j.ansens.2007.07.001CrossRefGoogle Scholar
Bate, D.. Structure of measures in Lipschitz differentiability spaces. J. Am. Math. Soc. 28 (2015), 421482.CrossRefGoogle Scholar
Björn, A. and Björn, J.. Nonlinear potential theory on metric spaces. EMS Tracts in Mathematics, vol. 17 (Zürich: European Mathematical Society (EMS), 2011).CrossRefGoogle Scholar
Braides, A., Buttazzo, G. and Fragalà, I.. Riemannian approximation of Finsler metrics. Asymptotic Anal. 31 (2002), 177187.Google Scholar
Brué, E. and Semola, D.. Constancy of the dimension for ${\rm RCD}(K,N)$ spaces via regularity of Lagrangian flows. Commun. Pure Appl. Math. 73 (2020), 11411204.10.1002/cpa.21849CrossRefGoogle Scholar
Cheeger, J.. Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9 (1999), 428517.CrossRefGoogle Scholar
Cheeger, J., Kleiner, B. and Schioppa, A.. Infinitesimal structure of differentiability spaces, and metric differentiation. Anal. Geom. Metric Spaces 4 (2016), 104159.Google Scholar
De Philippis, G., Marchese, A. and Rindler, F.. On a conjecture of Cheeger. In Measure Theory in Non-Smooth Spaces. Partial Differ. Equ. Meas. Theory, pp. 145–155 (Warsaw: De Gruyter Open, 2017).10.1515/9783110550832-004CrossRefGoogle Scholar
Edwards, D. A.. The structure of superspace. In Studies in Topology (New York: Academic Press, 1975), pp. 121–133.CrossRefGoogle Scholar
Eriksson-Bique, S.. Characterizing spaces satisfying Poincaré inequalities and applications to differentiability. Geom. Funct. Anal. 29 (2019), 119189.CrossRefGoogle Scholar
Eriksson-Bique, S. and Soultanis, E.. Curvewise characterizations of minimal upper gradients and the construction of a Sobolev differential. Preprint arXiv:2102.08097, 2021.Google Scholar
Fukaya, K.. Collapsing of Riemannian manifolds and eigenvalues of Laplace operator. Invent. Math. 87 (1987), 517547.10.1007/BF01389241CrossRefGoogle Scholar
Gigli, N.. On the differential structure of metric measure spaces and applications. Mem. Am. Math. Soc. 236 (2015), vi+91.Google Scholar
Gigli, N.. Nonsmooth differential geometry - an approach tailored for spaces with Ricci curvature bounded from below. Mem. Am. Math. Soc. 251 (2018), v+161.Google Scholar
Gigli, N., Mondino, A. and Rajala, T.. Euclidean spaces as weak tangents of infinitesimally Hilbertian metric measure spaces with Ricci curvature bounded below. J. Reine Angew. Math. 705 (2015), 233244.CrossRefGoogle Scholar
Gigli, N., Mondino, A. and Savaré, G.. Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows. Proc. London Math. Soc. 111 (2015), 10711129.Google Scholar
Gigli, N. and Pasqualetto, E.. Equivalence of two different notions of tangent bundle on rectifiable metric measure spaces. Commun. Anal. Geom. ArXiv:1611.09645, 2016.Google Scholar
Gigli, N. and Pasqualetto, E.. Behaviour of the reference measure on ${\rm RCD}$ spaces under charts. Commun. Anal. Geom. 29 (2021), 13911414.CrossRefGoogle Scholar
Gigli, N. and Tyulenev, A.. Korevaar–Schoen's energy on strongly rectifiable spaces. Calc. Var. Partial Differ. Equ. 60 (2021), 154.10.1007/s00526-021-02028-zCrossRefGoogle Scholar
Gromov, M.. Groups of polynomial growth and expanding maps. Publ. Math. Inst. Hautes Études Sci. 53 (1981), 5378.10.1007/BF02698687CrossRefGoogle Scholar
Heinonen, J. and Koskela, P.. Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181 (1998), 161.CrossRefGoogle Scholar
Heinonen, J., Koskela, P., Shanmugalingam, N. and Tyson, J. T.. Sobolev spaces on metric measure spaces. An approach based on upper gradients. New Mathematical Monographs, vol. 27 (Cambridge: Cambridge University Press, 2015).10.1017/CBO9781316135914CrossRefGoogle Scholar
Ikonen, T., Pasqualetto, E. and Soultanis, E.. Abstract and concrete tangent modules on Lipschitz differentiability spaces. Proc. Am. Math. Soc. 150 (2022), 327343.10.1090/proc/15656CrossRefGoogle Scholar
Keith, S.. A differentiable structure for metric measure spaces. Adv. Math. 183 (2004), 271315.CrossRefGoogle Scholar
Keith, S.. Measurable differentiable structures and the Poincaré inequality. Indiana Univ. Math. J. 53 (2004), 11271150.10.1512/iumj.2004.53.2417CrossRefGoogle Scholar
Kell, M. and Mondino, A.. On the volume measure of non-smooth spaces with Ricci curvature bounded below. Ann. Sc. Norm. Super. Pisa Cl. Sci. 18 (2018), 593610.Google Scholar
Ketterer, C.. Stability of metric measure spaces with integral Ricci curvature bounds. J. Funct. Anal. 281 (2021), 109142.10.1016/j.jfa.2021.109142CrossRefGoogle Scholar
Kirchheim, B.. Rectifiable metric spaces: Local structure and regularity of the Hausdorff measure. Proc. Am. Math. Soc. 121 (1994), 113123.10.1090/S0002-9939-1994-1189747-7CrossRefGoogle Scholar
Lučić, D. and Pasqualetto, E.. Infinitesimal Hilbertianity of weighted Riemannian manifolds. Can. Math. Bull. 63 (2020), 118140.CrossRefGoogle Scholar
Lučić, D. and Pasqualetto, E.. Gamma-convergence of Cheeger energies with respect to increasing distances. Preprint arXiv:2102.06276, 2021.Google Scholar
Mondino, A. and Naber, A.. Structure theory of metric measure spaces with lower Ricci curvature bounds. J. Eur. Math. Soc. (JEMS) 21 (2019), 18091854.10.4171/JEMS/874CrossRefGoogle Scholar
Petersen, P. and Wei, G.. Relative volume comparison with integral curvature bounds. Geom. Funct. Anal. 7 (1997), 10311045.CrossRefGoogle Scholar
Rajala, T.. Local Poincaré inequalities from stable curvature conditions on metric spaces. Calc. Var. Partial Differ. Equ. 44 (2012), 477494.CrossRefGoogle Scholar
Schioppa, A.. An example of a differentiability space which is PI-unrectifiable. Preprint arXiv:1611.01615, 2016.Google Scholar
Schioppa, A.. The Lip-lip equality is stable under blow-up. Calc. Var. Partial. Differ. Equ. 55 (2016), 130.CrossRefGoogle Scholar
Shanmugalingam, N.. Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoam. 16 (2000), 243279.CrossRefGoogle Scholar
Sturm, K.-T.. On the geometry of metric measure spaces. II. Acta Math. 196 (2006), 133177.10.1007/s11511-006-0003-7CrossRefGoogle Scholar