Skip to main content Accessibility help
×
Home

Necked states of non-linearly elastic plates

  • Pablo V. Negrón-Marrero (a1)

Synopsis

In this paper we study the equilibrium equations for axisymmetric deformations of isotropic circular plates in tension. We give results on the global multiplicity of solutions and study the stability of the trivial homogeneous solution for large displacements.

Copyright

References

Hide All
1Antman, S. S.. Nonuniqueness of equilibrium states for bars in tension. J. Math. Anal. Appl. 44 (1973), 333349.
2Antman, S. S.. Buckled states of nonlinearly elastic plates. Arch. Rational Mech. Anal. (2) 67 (1979), 111149.
3Antman, S. S.. Regular and singular problems for large elastic deformations of tubes, wedges, and cylinders. Arch. Rational Mech. Anal. 83 (1983), 152.
4Antman, S. S. and Carbone, E. R.. Shear and necking instabilities in nonlinear elasticity. J. Elasticity 7 (1977), 125151.
5Browder, F. E.. On continuity of fixed points under deformations of continuous mappings. Summa Brasil. Mat. 4 (1960), 183191.
6Crandall, M. G. and Rabinowitz, P. H.. Nonlinear Sturm-Liouville eigenvalue problems and topological degree. J. Math. Mech. 19 (1970), 10831102.
7Ericksen, J. L.. Equilibrium of bars. J. Elasticity 5 (1975), 191201.
8Gurtin, M. E.. Topics in Finite Elasticity (Philadelphia: Society for Industrial and Applied Mathematics, 1983).
9Ize, J.. Bifurcation theory for Fredholm operators. Mem. Amer. Math. Soc. 7 (1976).
10Kielhöfer, H.. Multiple eigenvalue bifurcation for Fredholm operators. (Preprintno. 103 Institut für Angewandte Mathematik und Statistik, Am Hubland, 8700 Würzburg, F.R.G., 1984).
11Leray, J. and Schauder, J.. Topologie et équations functionelles. Ann. Sci. École Norm. Sup. (3) 51 (1934), 4578.
12Magnus, R. J.. A generalization of multiplicity and the problem of bifurcation. Proc. London Math. Soc. (3) 32 (1976), 251278.
13Negrón-Marrero, P. V.. Large buckling of circular plates with singularities due to anisotropy (Doctoral Dissertation, University of Maryland at College Park, 1985).
14Owen, N.. Existence and stability of necking deformations for nonlinearly elastic rods. Arch. Rational Mech. Anal. 98 (1987) 357383.
15Rabinowitz, P. H.. Nonlinear Sturm-Liouville problems for second order ordinary differential equations. Comm. Pure Appl. Math. 23 (1970) 939961.
16Rabinowitz, P. H.. Some global results for nonlinear eigenvalue problems. J. Fund. Anal. 7 (1971), 487513.
17Rabinowitz, P. H.. A global theorem for nonlinear eigenvalue problems and applications. In Contributions to Nonlinear Functional Analysis, ed. E. Zarantonello, H. (New York: Academic Press, 1971).
18Rabinowitz, P. H.. Some aspects of nonlinear eigenvalue problems. Rocky Mountain J. Math. 3 (1973), 161202.
19Radon, J.. Über lineare Funktionaltransformationen und Funktionalgleichungen. S.-B. Akad. Wiss. Wien 128 (1919), 10831121.
20Wang, C. C. and Truesdell, C.. Introduction to Rational Elasticity (Leyden: Noordhoff, 1973).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed