Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T02:14:13.827Z Has data issue: false hasContentIssue false

A multi-phase Mullins–Sekerka system: matched asymptotic expansions and an implicit time discretisation for the geometric evolution problem

Published online by Cambridge University Press:  14 November 2011

Lia Bronsard
Affiliation:
Department of Mathematics, McMaster University, Hamilton, Ontario, L8S 4K1, Canada E-mail: bronsard@math.mcmaster.ca
Harald Garcke
Affiliation:
IAM, Universität Bonn, Wegelerstraße 6, 53115 Bonn, Deutschland E-mail: harald@iam.uni-bonn.de
Barbara Stoth
Affiliation:
IAM, Universität Bonn, Wegelerstraße 6, 53115 Bonn, Deutschland E-mail: bstoth@iam.uni-bonn.de

Abstract

We propose a generalisation of the Mullins–Sekerka problem to model phase separation in multi-component systems. The model includes equilibrium equations in bulk, the Gibbs–Thomson relation on the interfaces, Young's law at triple junctions, together with a dynamic law of Stefan type. Using formal asymptotic expansions, we establish the relationship to a transition layer model known as the Cahn-Hilliard system. We introduce a notion of weak solutions for this sharp interface model based on integration by parts on manifolds, together with measure theoretical tools. Through an implicit time discretisation, we construct approximate solutions by stepwise minimisation. Under the assumption that there is no loss of area as the time step tends to zero, we show the existence of a weak solution.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Alikakos, N., Bates, P. and Chen, X.. Convergence of the Cahn-Hilliard equationto the Hele-Shaw model. Arch. Rational Mech. Anal. 128 (1994), 165205Google Scholar
2Almgren, F., Taylor, J. and Wang, L.. Curvature driven flows: A variational approach. SIAM J. Control Optim. 31 (1993), 387437.Google Scholar
3Baldo, S.. Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids. Ann. Inst. H. Poincaré, Anal. Non Linéaire 7 (1990), 3765.CrossRefGoogle Scholar
4Bronsard, L., Gui, C. and Schatzman, M.. A three layered minimizer in R2 for a variational problem with a symmetric three-well potential. Comm. Pure Appl. Math. 47 (1996), 677715.3.0.CO;2-6>CrossRefGoogle Scholar
5Bronsard, L. and Reitich, F.. On singular three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation. Arch. Rational Mech. Anal. 124 (1993), 355–79.Google Scholar
6Caginalp, G. and Fife, P.. Dynamics of layered interfaces arising from phase boundaries. SIAM J. Appl. Math. 48 (1988), 506–18.CrossRefGoogle Scholar
7Cahn, J., Elliott, C. M. and Novick-Cohen, A.. The Cahn-Hilliard equation: Motion by minus the Laplacian of the mean curvature. European J. Appl. Math. 7 (1996), 287301.CrossRefGoogle Scholar
8Cahn, J. and Novick-Cohen, A.. Evolution equations for phase separation and ordering in binary alloys. J. Stat. Phys. 76 (1994), 877909.Google Scholar
9Cahn, J. and Novick-Cohen, A.. Order-disorder and phase transitions: Allen-Cahn/Cahn-Hilliard systems. In Proceedings of FBP'95, Zakopane, ed. Niezgodka, M. and Strzelecki, M.. (Addison Wesley Longman, 1996).Google Scholar
10Chen, X.. Global asymptotic limit of solutions of the Cahn-Hilliard equations, 2. Differential Geom. 47 (1996) 262311.Google Scholar
11Chen, Y.-G., Giga, Y. and Goto, S.. Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differential Geom. 33 (1991), 749–86.Google Scholar
12Chen, X., Hong, J. and Yi, F.. Existence, uniqueness and regularity of classical solutions of the Mullins-Sekerka free boundary problem. Comm. Partial Diff. Eqns. 21 (1996), 1705.Google Scholar
13Mottoni, P. De and Schatzman, M.. Geometrical evolution of developed interfaces. Trans. Amer. Math. Soc. 347 (1995), 1533–89.Google Scholar
14Duchon, J. and Robert, R.. Évolution d'une interface par capillarité et diffusion de volume 1. Existence locale en temps. Ann. Inst. H. Poincaré, Anal. Non Linéaire 1 (1984), 361—78.CrossRefGoogle Scholar
15Dunford, N. and Schwartz, J. T.. Linear Operators, Part I (New York: Interscience Publishers, 1967).Google Scholar
16Elliott, C. M. and Garcke, H.. Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix. Physica D 109 (1997), 242–56.CrossRefGoogle Scholar
17Elliott, C. M. and Luckhaus, St.. A generalized diffusion equation for phase separation of a multicomponent mixture with interfacial free energy (SFB256 Preprint 195, Bonn, 1991).Google Scholar
18Escher, J. and Simonett, G.. Classical solutions for Hele-Shaw models with surface tension. Adv. Diff. Eqn. 2 (1997), 619–42.Google Scholar
19Evans, L. C. and Spruck, J.. Motion of level sets by mean curvature I. J. Differential Geom. 33 (1991), 635–81.Google Scholar
20Evans, L. C., Soner, H. M. and Souganidis, P.. Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math. 45 (1992), 1097–123.Google Scholar
21Garcke, H. and Novick-Cohen, A.. A singular limit for a system of degenerate Cahn-Hilliard equations. Adv. Diff. Eqn. (to appear).Google Scholar
22Garcke, H. and Sturzenhecker, Th.. The degenerate multiphase Stefan problem with Gibbs-Thomson law. Adv. Math. Sci. Appl. 8 (1998) (to appear).Google Scholar
23Giusti, E.. Minimal Surfaces and Functions of Bounded Variation (Boston: Birkhauser, 1984).Google Scholar
24Hildebrandt, St. and Tromba, A.. Mathematics and Optimal Form (New York:Scientific American, 1985).Google Scholar
25Ilmanen, T.. Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature. J. Differential Geom. 38 (1993), 417–61.Google Scholar
26Luckhaus, St.. The Stefan problem with the Gibbs-Thomson relation for the melting temperature. European J. Appl. Math. 1 (1991), 101–11.Google Scholar
27Luckhaus, St. and Sturzenhecker, Th.. Implicit time discretization for the mean curvature flow equation. Calc. Var. 3 (1995), 253–71.Google Scholar
28Novick-Cohen, A.. Triple junction motion for Allen-Cahn/Cahn-Hilliard systems (Preprint, 1996).Google Scholar
29Otto, F.. Dynamics of labyrinthine pattern formation in magnetic fluids: A mean field theory (SFB256 Preprint 439, Bonn, 1996).Google Scholar
30Owen, N., Rubinstein, J. and Sternberg, P.. Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition. Proc. Roy. Soc. London Ser. A 429 (1990), 505–32.Google Scholar
31Pego, R.. Front migration in the nonliner Cahn–Hilliard equation. Proc. Roy. Soc. London Ser. A 422 (1989), 261–78.Google Scholar
32Reshetnyak, Yu. G.. Weak convergence of completely additive vector functions on a set. Siberian Math. J. 9 (1968), 1039–45.Google Scholar
33Riesz, M.. Sur les ensembles compacts de fonctions sommables. Ada Sci. Math. Szeged 6 (1933), 136–42.Google Scholar
34Soner, H. M.. Convergence of the phase-field equations to the Mullins-Sekerka problem with kineticundercooling. Arch. Rational Meek Anal. 131 (1995), 139–97.Google Scholar
35Sternberg, P.. Vector-valued local minimizers of noncovex variational problems. Rocky Mountain J. Math. 21 (1991), 799807.Google Scholar
36Stoth, B.. Convergence of the Cahn-Hilliard equation to the Mullins-Sekerka problem in spherical symmetry. J. Differential Equations 125 (1996), 154–83.CrossRefGoogle Scholar
37Vol, A. I.'pert. The spaces BV and quasilinear equations. Math. USSR-Sb. 2 (1967), 225–67.Google Scholar