Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-22T01:02:25.388Z Has data issue: false hasContentIssue false

Minimum action solutions of non-linear elliptic equations in unbounded domains containing a plane

Published online by Cambridge University Press:  14 November 2011

Otared Kavian
Affiliation:
Analyse Numérique, Couloir 55-65, 5ème Etage, Université P. & M. Curie, 4, Place Jussieu, 75252 Paris, Cedex 05, France

Synopsis

Let d ≧ 1 be an integer and ω ⊂ℝd a smooth bounded domain and consider the elliptic equation − Δu = g(u) on Ω = ℝ2 × ω. We prove that under (almost) necessary and sufficient conditions on the continuous function g: ℝm→ ℝm the above equation has a minimum-action solution.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ambrosetti, A. and Rabinowitz, P. H.. Dual variational methods in critical points theory, and applications. J. Fund. Anal. 14 (1973), 349381. (Cf. also Variational methods for nonlinear eigenvalue problems. In Eigenvalue of Nonlinear Problems (ed. G. Prodi) (Rome: C.I.M.E. Ediz. Cremonese, 1974).)CrossRefGoogle Scholar
2Berestycki, H. and Lions, P. L.. Nonlinear scalar fields equations. Arch. Rational Mech. Anal. 82 (1983), 313376.CrossRefGoogle Scholar
3Berestycki, H., Gallouët, Th. and Kavian, O.. Equations de champs scalaires dans le plan. C. R. Acad. Sci. Paris Ser. 1 Math. 297 (1983), 307310; and Preprint, Publications du Laboratoire d'Analyse Numérique 83050 (Paris: University PARIS VI).Google Scholar
4Brézis, H. and Lieb, E. H.. Minimum-action solutions of some vector-field equations. Comm. Math. Phys. 96 (1984), 97113.CrossRefGoogle Scholar
5Coffman, C. V.. A minimum-maximum principle for a class of nonlinear integral equations. J. Analyse Math. 22 (1969), 391419.CrossRefGoogle Scholar
6Coffman, C. V.. On a class of nonlinear elliptic boundary value problems. J. Math. Mech. 19 (1970), 351356.Google Scholar
7Coleman, S., Glazer, V. and Martin, A.. Action minima among solutions to a class of Euclidian scalar field equations. Comm. Math. Phys. 58 (1978), 211221.CrossRefGoogle Scholar
8Esteban, M. J.. Nonlinear elliptic problems in strip-like domains; symmetry of positive vortex rings. J. Nonlinear Anal. T.M.A. 7 (1983), 365379.CrossRefGoogle Scholar
9Hempel, J. A.. Multiple solutions for a class of nonlinear elliptic boundary value problems. Indiana Univ. Math. J. 20 (1971), 983996.CrossRefGoogle Scholar
10Lieb, E. H.. On the lowest eigenvalue of the Laplacian for the intersection of two domains. Invent. Math. 74 (1983), 441448.CrossRefGoogle Scholar
11Lions, P. L.. The concentration—compactness principle in the calculus of variations. The locally compact case, Part 2. Ann. Inst. H. Poincaré Analyse Non-Lineaire 1 (1984), 109145.CrossRefGoogle Scholar
12Pohožaev, S. I.. Eigenfunctions of the equation Δu + λf(u) = 0.. Soviet Math. Dokl. 6 (1965), 14081411.Google Scholar
13Stauss, W. A.. Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55 (1977), 149162.CrossRefGoogle Scholar