Skip to main content Accessibility help
×
Home

Linearization stability and Signorini Series for the traction problem in elastostatics

  • J. E. Marsden (a1) and Y. H. Wan (a2)

Synopsis

This paper uses previous results of Chillingworth, Marsden and Wan on symmetry and bifurcation for the traction problem in three dimensional elastostatics to establish new results on the Signorini expansion. We show that the Signorini compatibility conditions are necessary and sufficient for linearization stability and analogies with results known for other field theories are pointed out. Under an explicit non-degeneracy condition, a new series expansion is given in which successive terms are inductively determined in pairs rather than singly. Our results include as special cases, classical results of Signorini, Tolotti and Stoppelli.

Copyright

References

Hide All
1Arms, J., Marsden, J. and Moncrief, V.. Bifurcations of momentum mappings. Comm. Math. Phys. 78 (1981), 455478.
2Arms, J., Marsden, J. and Moncrief, V.. The structure of the space solutions of Einstein's equations; II Several killing fields and the Einstein-Yang-Mills equations. Ann. Physics 144 (1982), 81106.
3Capriz, G. and Podio-Guidugli, P.. On Signorini's perturbation method in nonlinear elasticity. Arch. Rational Mech. Anal. 57 (1974), 130.
4Chillingworth, D. R. J., Marsden, J. E. and Wan, Y. H.. Symmetry and bifurcation in three dimensional elasticity, Part I. Arch. Rational Mech. Anal. 80 (1982), 295331.
5Chillingworth, D. R. J., Marsden, J. E. and Wan, Y. H.. Symmetry and bifurcation in three dimensional elasticity, Part II. Arch. Rational Mech. Anal, (to appear).
6Fichera, G.. Existence theorems in elasticity. Handbuch der Physik, Bd VIa/2, 347389 (Berlin: Springer, 1972).
7Fischer, A. and Marsden, J.. Linearization stability of the Einstein equations. Bull. Amer. Math. Soc. 79 (1973), 9951001.
8Fischer, A. and Marsden, J.. Linearization stability of nonlinear partial differential equations. Proc. Sympos. Pure Math. Stanford 1973, vol. 27; Part 2, 219263 (Providence, R.I.: Amer. Math. Soc, 1975).
9Fischer, A., Marsden, J. and Moncrief, V.. The structure of the space solutions of Einstein's equations. I. One killing field. Ann. Inst. H. Poincaré Sect. B 33 (1980), 147194.
10Grioli, G.. Mathematical Theory of Elastic Equilibrium. Ergebnisse der Ang. Mat. 67 (Berlin: Springer, 1962).
11Marsden, J. E. and Hughes, T. J. R.. Mathematical Foundations of Elasticity (Englewood Cliffs: Prentice-Hall, 1983).
12Signorini, S.. Sulle deformazioni termoelastiche finite. Proc. 3rd Int. Cong,. Appl. Mech. 2 (1930), 8089.
13Stoppelli, F.. Sulla svilluppabilità in serie di potenze di un parametro delle soluzioni delle equazioni dell'elastostatica isoterma. Ricerche Mat. 4 (1955), 5873.
14Stoppelli, F.. Sull'esistenza di soluzioni delle equazioni dell'elastostatica isoterma nel caso di sollecitazioni dotate di assi di equilibrio. Ricerche Mat. 6 (1957), 241287; 7 (1958), 71–101, 138–152.
15Tolotti, C.. Orientamenti principali di un corpo elastico rispetto alia sua sollecitazione totale. Atti Accad. Italia Mem. Cl. Sci. Fis. Mat. Nat. 13 (1943), 11391162.
16Truesdell, C. and Noll, W.. The nonlinear field theories of mechanics. Handbuch der Physik Bd III/3, S. Flügge, ed. (Berlin: Springer, 1965).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed