1Akahori, T., Ibrahim, S., Kikuchi, H. and Nawa, H.. Existence of a ground state and blow-up problem for a nonlinear Schrödinger equation with critical growth. Differ. Integral Equ. 25 (2012), 383–402.

2Akahori, T., Ibrahim, S., Kikuchi, H. and Nawa, H.. Existence of a ground state and scattering for a nonlinear Schrödinger equation with critical growth. Selecta Mathematica 19 (2013), 545–609.

3Akahori, T., Ibrahim, S., Kikuchi, H. and Nawa, H.. Global dynamics for a nonlinear Schrödinger equation above a ground state with small frequency. to appear in Memoir of AMS. (arxiv:1510.08034).

4Akahori, T., Ibrahim, S., Ikoma, N., Kikuchi, H. and Nawa, H.. Uniqueness and nondegeneracy of ground states to nonlinear scalar field equations involving the Sobolev critical exponent in their nonlinearities for high frequencies, arXiv:1801.0969.

5Brézis, H. and Nirenberg, L.. Positive solutions of nonlinear equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36 (1983), 437–477.

6Cazenave, T.. Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics,vol. 10 (New York: New York university, Courant Institute of Mathematical Sciences, 2003).

7Coles, M. and Gustafson, S.. Solitary Waves and Dynamics for Subcritical Perturbations of Energy Critical NLS, to appear in D.I.E., arxiv:1707.07219.

8Duyckaerts, T. and Merle, F.. Dynamic of threshold solutions for energy-critical NLS. Geom. Funct. Anal. 18 (2009), 1787–1840.

9Duyckaerts, T., Holmer, J. and Roudenko, S.. Scattering for the non-radial 3D cubic nonlinear Schrödinger equation. Math. Res. Lett. 15 (2008), 1233–1250.

10Georgiev, V. and Ohta, M.. Nonlinear instability of linearly unstable standing waves for nonlinear Schrödinger equations. J. Math. Soc. Japan 64 (2012), 533–548.

11Gidas, B., Ni, W. M. and Nirenberg, L.. Symmetry of positive solutions of nonlinear elliptic equations in ℝ^{N}. Math. Anal. Appl. 7a (1981), 369–402.

12Grillakis, M.. Linearized instability for nonlinear Schrödinger and Klein-Gordon equations. Comm. Pure Appl. Math. 41 (1988), 747–774.

13Grillakis, M.. Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system. Comm. Pure Appl. Math. 43 (1990), 299–333.

14Grillakis, M., Shatah, J. and Strauss, W.. Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal. 74 (1987), 160–197.

15Grillakis, M., Shatah, J. and Strauss, W.. Stability theory of solitary waves in the presence of symmetry. II. J. Funct. Anal. 94 (1990), 308–348.

16Grossi, M.. A nondegeneracy result for a nonlinear elliptic equation. NoDEA Nonlinear Differ. Equ. Appl. 12 (2005), 227–241.

17Jensen, A. and Kato, T.. Spectral properties of Schrödinger operators and time-decay of the wave functions. Duke Math. J. 46 (1979), 583–611.

18Jones, C. K. R. T.. An instability mechanism for radially symmetric standing waves of a nonlinear Schrödinger equation. J. Differ. Equ. 71 (1988), 34–62.

19Kabeya, Y. and Tanaka, K.. Uniqueness of positive radial solutions of semilinear elliptic equations in ℝ^{N} and Sere's non-degeneracy condition. Comm. Partial Differ. Equ. 24 (1999), 563–598.

20Kenig, C. E. and Merle, F.. Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166 (2006), 645–675.

21Killip, R., Oh, T., Pocovnicu, O. and Visan, M.. Solitons and scattering for the cubic-quintic nonlinear Schrödinger equation on ℝ^{3}. Arch. Ration. Mech. Anal. 225 (2017), 469–548.

22Lieb, E.H. and Loss, M.. Analysis, Graduate Studies in Mathematics, vol. 14, 2nd edn (American Mathematical Society, 2001).

23Maris, M.. Existence of nonstationary bubbles in higher dimensions. J. Math. Pures Appl. 81 (2002), 1207–1239.

24Miao, C., Xu, G. and Zhao, L.. The dynamics of the 3D radial NLS with the combined terms. Commun. Math. Phys. 318 (2013), 767–808.

25Mizumachi, T.. A remark on linearly unstable standing wave solutions to NLS. Nonlinear Anal. 64 (2006), 657–676.

26Mizumachi, T.. Instability of vortex solitons for 2D focusing NLS. Adv. Differ. Equ. 12 (2007), 241–264.

27Moroz, V. and Muratov, C.. Asymptotic properties of ground states of scalar field equations with a vanishing parameter. J. Eur. Math. Soc. 16 (2014), 1081–1109.

28Nakanishi, K. and Roy, T.. Global dynamics above the ground state for the energy-critical Schrödinger equation with radial data. Commun. Pure Appl. Anal. 15 (2016), 2023–2058.

29Nakanishi, K. and Schlag, W.. Global dynamics above the ground state energy for the focusing nonlinear Klein-Gordon equation. J. Differ. Equ. 250 (2011), 2299–2333.

30Nakanishi, K. and Schlag, W.. Global dynamics above the ground state energy for the cubic NLS equation in 3D. Calc. Var. and PDE 44 (2012), 1–45.

31Pucci, P. and Serrin, J.. Uniqueness of ground states for quasilinear elliptic operators. Indiana Univ. Math. J. 47 (1998), 501–528.

32Shatah, J. and Strauss, W.. Instability of nonlinear bound states. Comm. Math. Phys. 100 (1985), 173–190.

33Shatah, J. and Strauss, W.. Spectral condition for instability. Contemp. Math. 255 (2000), 189–198.

34Weinstein, M.. Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16 (1985), 472–491.

35Vakhitov, N. G. and Kolokolov, A. A.. Stationary solutions of the wave equation in the medium with nonlinearity saturations. Radiophys. Quantum Electron. 16 (1973), 783–789.