Skip to main content Accessibility help
×
Home

Large-frequency global regularity for the incompressible Navier–Stokes equation

  • Joel D. Avrin (a1)

Abstract

We obtain global existence and regularity of strong solutions to the incompressible Navier–Stokes equations for a variety of boundary conditions in such a way that the initial and forcing data can be large in the high-frequency eigenspaces of the Stokes operator. We do not require that the domain be thin as in previous analyses. But in the case of thin domains (and zero Dirichlet boundary conditions) our results represent a further improvement and refinement of previous results obtained.

Copyright

References

Hide All
1Avrin, J. D.. Large-eigenvalue global existence and regularity results for the Navier–Stokes equation. J. Diff. Eqns 127 (1996), 365390.
2Avrin, J. D.. A one-point attractor theory for the Navier–Stokes equation on thin domains with no-slip boundary conditions. Proc. AMS 127 (1999), 725735.
3Foias, C. and Prodi, G.. Sur le comportement global des solutions non stationaires des équations de Navier–Stokes en dimension 2. Rend. Sem. Mat. Univ. Padova 39 (1967), 134.
4Friedman, A.. Partial differential equations (New York: Holt, Rinehart and Winston, 1969).
5Fujita, H. and Kato, T.. On the Navier–Stokes initial value problem I. Arch. Ration. Mech. Analysis 16 (1964), 269315.
6Giga, Y. and Miyakawa, T.. Solutions in L r of the Navier–Stokes initial value problem. Arch. Ration. Mech. Analysis 89 (1985), 267281.
7Guillopé, C.. Comportement è l'infini des solutions des équations de Navier–Stokes et propriété des ensembles fonctionnels invariants (au attracteurs). Ann. Inst. Fourier (Grenoble) 32 (1982), 137.
8Heywood, J. G.. The Navier–Stokes equations: on the existence, regularity and decay of solutions. Ind. U. Math. J. 29 (1980), 639681.
9Hopf, E.. Über die Anfangswertaufgabe für die hydrodynamischen Grudgleichungen. Math. Nachr. 4 (1951), 213231.
10Ladyzhenskaya, O. A.. The mathematical theory of viscous incompressible flow, 2nd edn (English transl.) (New York: Gordon and Breach, 1969).
11Leray, J.. Etude de diverses équations intégrales nonlinéaires et de quelques problémes que pose l'hydrodynamique. J. Math. Pures Appl. 12 (1933), 182.
12Raugel, G. and Sell, G. R.. Navier–Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions. J. Am. Math. Soc. 6 (1993), 503568.
13Serrin, J.. On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Analysis 9 (1962), 187195.
14Témam, R.. Navier–Stokes equations (Amsterdam: North-Holland, 1977).
15Témam, R.. Navier–Stokes equations and nonlinear functional analysis. CBMS Regional Conference Series, no. 41 (Philadelphia: SIAM, 1983).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed