Skip to main content Accessibility help
×
Home

L2-lower bounds to solutions of one-body Schrödinger equations

  • R. Froese (a1), I. Herbst (a1), M. Hoffmann-Ostenhof (a2) and T. Hoffmann-Ostenhof (a3)

Extract

The asymptotic behaviour of L2-solutions of one-body Schrödinger equations (–δ+V–E)ψ = 0 in ΩR = {x ∊ Rn||x|>R} is investigated. We show, for example, that if V tends to zero in a certain sense for |x|→∞, then either |x|γ exp for some γ>0 or ψ has compact support. Related results are given for potentials tending to infinity for |x|→∞.

Copyright

References

Hide All
1Agmon, S.. Lectures on exponential decay of solutions of second order elliptic equations. Bounds on eigenfunctions of N-body Schrödinger operators, to be published.
2Agmon, S.. Lower bounds for solutions of Schrödinger equations. J. Analyse Math. 23 (1970), 125.
3Ahlrichs, R., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T. and Morgan III, J.. Bounds on the decay of electron densities with screening. Phys. Rev. A 23 (1981), 21062117.
4Amrein, W. O., Berthier, A. M. and Georgescu, V.. Lp-inequalities for the Laplacian and unique continuation. Ann. Inst. Fourier (Grenoble) 31 (1981), 153168.
5Bardos, C. and Merigot, M.. Asymptotic decay of solutions of a second order elliptic equation in an unbounded domain. Applications to the spectral properties of a Hamiltonian. Proc. Roy. Soc. Edinburgh Sect. A 76 (1977), 323344.
6Carmona, R. and Simon, B.. Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems, V: lower bounds and path integrals. Comm. Math. Phys. 80 (1981), 5998.
7Combes, J. M., Hoffmann-Ostenhof, M. and Hoffmann-Ostenhof, T.. Asymptotics of atomic groundstates: the relation between the groundstate of Helium and the groundstate of He+. J. Math. Phys. 22 (1981), 12991305.
8Davies, E. B.. JWKB and related bounds on Schrödinger eigenfunctions. Bull. London Math. Soc. 14 (1982), 273284.
9Deift, P., Hunziker, W., Simon, B. and Vock, E.. Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems, IV. Comm. Math. Phys. 64 (1978), 134.
10Froese, R., Herbst, I., Hoffmann-Ostenhof, M. and Hoffmann-Ostenhof, T.. L2-exponential lower bounds to solutions of the Schrödinger equation. Comm. Math. Phys. 87 (1982), 265286.
11Froese, R., Herbst, I., Hoffmann-Ostenhof, M. and Hoffmann-Ostenhof, T.. On the absence of positive eigenvalues for one-body Schrödinger operators. J. Analyse Math. (1983), to appear.
12Georgescu, V.. On the unique continuation property for Schrödinger Hamiltonians. Helv. Phys. Acta 52 (1979), 655670.
13Hörmander, L.. Théorie de la diffusion à courte portée pour des opérateurs a caractéristique simple. Sém. Goulaouic-Meyer-Schwartz, 1980–1981, Exp. XIV.
14Hörmander, L.. Uniqueness theorems for second order elliptic differential equations, preprint (1982).
15Lieb, E. H.. and Simon, B... Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems, VI. Asymptotics in the two cluster region. Adv. Appl. Math. 1 (1980), 324343.
16Reed, M.. and Simon, B... Methods of modem mathematical physics, IV. Analysis of operators (New York: Academic Press, 1978).
17Reed, M.. and Simon, B... Methods of modem mathematical physics, II. Fourier analysis, self-adjointness (New York: Academic Press, 1975).
18Simon, B... Schrödinger semigroups, Bull. Amer. Math. Soc. 7 (1982), 447526

L2-lower bounds to solutions of one-body Schrödinger equations

  • R. Froese (a1), I. Herbst (a1), M. Hoffmann-Ostenhof (a2) and T. Hoffmann-Ostenhof (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed