Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-17T00:14:29.975Z Has data issue: false hasContentIssue false

Kinetic conditions for the existence of wave fronts in reaction-diffusion systems

Published online by Cambridge University Press:  14 November 2011

José M. Fraile
Affiliation:
Departamento de Ecuaciones Funcionales, Universidad Complutense de Madrid, Spain
José Sabina
Affiliation:
Departamento de Ecuaciones Funcionales, Universidad Complutense de Madrid, Spain

Synopsis

This paper deals with the existence of bounded plane wave fronts of reaction-diffusion systems. The main result ensures the partial invariance of a certain region, under kinetic conditions commonly used in the literature. This allows us to construct bounded plane wave fronts taking their values in that domain. We also give an estimate of the minimum permissible value of the propagation velocity of those plane wave fronts. Some examples are given.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Amann, H.. Invariant sets and existence theory for semilinear parabolic and elliptic systems. J. Math. Anal. Appl. 65 (1978), 432467.CrossRefGoogle Scholar
2Chueh, K. N., Conley, C. and Smoller, J.. Positively invariant regions for systems of nonlinear diffusion equations. Indiana Univ. Math. J. 26 (1977), 373392.CrossRefGoogle Scholar
3Conley, C. and Fife, P. C.. Critical manifolds, travelling waves and an example from population genetics (Univ. of Wisconsin at Madison Math. Research Center, T.S.R. 2142, 1980).CrossRefGoogle Scholar
4Conley, C. and Gardner, R.. An application of the generalized Morse Index to travelling wave solutions of a competitive R–D model (Univ. of Wisconsin at Madison Math. Research Center, T.S.R. 2144, 1980).Google Scholar
5Conley, C. and Smoller, J.. Remarks on travelling wave solutions of non-linear diffusion equations. Lecture Notes in Mathematics 525, pp. 7789 (Berlin: Springer, 1976).Google Scholar
6Fife, P. C.. Mathematical Aspects of Reacting and Diffusing Systems. Lecture Notes in Biomathematics 28 (Berlin: Springer, 1979).Google Scholar
7Fraile, J. M. and Sabina, J.. Boundary value conditions for wave fronts in reaction-diffusion systems. Proc. Roy. Soc. Edinburgh Sect. A 99 (1984), 127136.CrossRefGoogle Scholar
8Gilbarg, D. and Trudinger, N. S.. Elliptic Partial Differential Equations of Second Order. Grundlehren Math. Wiss. 224 (Berlin: Springer, 1977).Google Scholar
9Hahn, W.. Theory and Applications of Lyapunov's Direct Method (Englewood Cliffs, N.J.: Prentice-Hall, 1963).Google Scholar
10Hale, J.. Ordinary Differential Equations (New York: Wiley-Interscience, 1969).Google Scholar
11Kopell, N. and Howard, L. N.. Plane wave solutions to reaction-diffusion systems. Stud. Appl. Math. 52 (1973), 291328.CrossRefGoogle Scholar
12Kopell, N. and Howard, L. N.. Bifurcations and trajectories joining critical points. Adv. in Math. 18 (1975), 306358.CrossRefGoogle Scholar
13La, J. P. Salle. The Stability of Dynamical Systems. (Providence, R.I.: Regular Conference Series in Applied Mathematics SIAM, 1976).Google Scholar
14Marsden, J. E. and McCracken, M.. The Hopf Bifurcation and its Applications. Appl. Math. Sci. 19 (New York: Springer, 1976).Google Scholar
15Massera, J. L.. On Liapunoff's conditions of stability. Ann. of Math. 50 (1949), 705721.CrossRefGoogle Scholar
16Sabina, J.. Nuevos resultados sobre frentes de onda en sistemas de reacción y difusión (Doctoral Thesis. Univ. Complutense de Madrid, 1984).Google Scholar
17Weimberger, H. F.. Invariant sets for weakly coupled parabolic and elliptic systems. Rend. Mat. 8 (1975), 295310.Google Scholar