Skip to main content Accessibility help

Integral representation of functionals defined on curves of W1,p

  • Micol Amar (a1), Giovanni Bellettini (a2) and Sergio Venturini (a3)


Let I ⊂ ℝ be a bounded open interval, (I) be the family of all open subintervals of I and let p > 1. The aim of this paper is to give an integral representation result for abstract functionals F: W1,p(I;ℝn) × (I) → [0, + ∞) which are lower semicontinuous and satisfy suitable properties. In particular, we prove an integral representation theorem for the Г-limit of a sequence {Fh}h, of functionals of the form

where each fh is a Borel function satisfying proper growth conditions.



Hide All
1Alberti, G. and Buttazzo, G.. Integral representation of functionals denned on Sobolev spaces. In Composite Media and Homogenization Theory, Trieste, 1990, pp. 112 (Boston: Birkhäuser, 1991).
2Amar, M. and Bellettini, G.. A notion of total variation depending on a metric with discontinuous coefficients. Ann. Inst. H. Poincare, Anal. Non Lineaire 11 (1994), 91133.
3Ambrosio, L.. Relaxation of autonomous functionals with discontinuous integrands. Ann. Univ. Ferrara Sez. VII (N.S.) (1988), 2147.
4Ambrosio, L.. A lower closure theorem for autonomous orientor fields. Proc. Roy. Soc. Edinburgh Sect. A 110 (1988), 249–54.
5Bouchitté, G. and Buttazzo, G.. Integral representation of nonconvex functionals defined on measures. Ann. Inst. H. Poincaré, Anal. Non Linéaire 9 (1992), 101–17.
6Buttazzo, G.. Semicontinuity, Relaxation and Integral Representation Problems in the Calculus of Variations, Pitman Research Notes in Mathematics (Harlow: Longman, 1989).
7Buttazzo, G. and Maso, G. Dal. Integral representation and relaxation of local functionals. Nonlinear Anal. 9 (1985), 515–32.
8Buttazzo, G. and Maso, G. Dal. A characterization of nonlinear functionals on Sobolev spaces which admit an integral representation with a Charatheodory integrand. J. Math. Pures Appl. 64 (1985), 337–61.
9Buttazzo, G. and Leaci, A.. Relaxation results for a class of variational integrals. J. Fund. Anal. 61 (1985), 360–77.
10Dacorogna, B.. Weak Continuity and Weak Lower Semicontinuity of Nonlinear Functionals, Lecture Notes in Mathematics 922 (Berlin: Springer, 1982).
11Dacorogna, B.. Direct Methods in the Calculus of Variations (Berlin: Springer, 1989).
12Maso, G. Dal. An Introduction to I'-Convergence (Boston: Birkhäuser, 1993).
13Maso, G. Dal and Modica, L.. Integral functional determined by their minima. Rend. Sem. Mat. Univ. Padova 76 (1986), 255–67.
14De Cecco, G. and Palmieri, G.. Distanza intrinseca su una varieta finsleriana di Lipschitz. Rend. Accad. Naz. Sci. XL Mem. Mat. (5) 17 (1) (1993), 129–51.
15De Giorgi, E.. Teoremi di semicontinuitàa nel calcolo delle variazioni (Notes of a course held at the Istituto Nazionale di Alta Matematica, Roma, 1968–9).
16De Giorgi, E., Buttazzo, G. and Maso, G. Dal. On the lower semicontinuity of certain integral functionals. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (8) Mat. Appl. 74 (5) (1983), 274–82.
17De Giorgi, E. and Franzoni, T.. Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (8) Mat. Appl. 58 (8) (1975), 842–50.
18Ekeland, I. and Temam, R.. Convex Analysis and Variational Problems (Amsterdam: North-Holland, 1978).
19Ioffe, A. D.. On lower semicontinuity of integral functionals I. II. SIAM J. Control Optim. 15 (1977), 521–38; 9911000.
20Kolmogorov, A. and Fomine, S.. Éléments de la Théorie des fonctions et de l'analyse fonctionelle (Moscow: Mir, 1977).
21Marcellini, P. and Sbordone, C.. Semicontinuity problems in the calculus of variations. Nonlinear Anal. 4 (1980), 241–57.
22Marcus, M. and Mizel, V. J.. A characterization of non-linear functionals on W1,p possessing autonomous kernels. I. Pacific J. Math. 65 (1976), 135–58.
23Rinow, W.. Die Innere Geometrie der Metrischen Raume (Berlin: Springer, 1961).
24Serrin, J.. On the definition and properties of certain variational integrals. Trans. Amer. Math. Soc. 101 (1961), 139–67.

Related content

Powered by UNSILO

Integral representation of functionals defined on curves of W1,p

  • Micol Amar (a1), Giovanni Bellettini (a2) and Sergio Venturini (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.