Skip to main content Accessibility help
×
Home

Global Euler obstruction, global Brasselet numbers and critical points

  • Nicolas Dutertre (a1) and Nivaldo G. Grulha (a2)

Abstract

Let X ⊂ ℂn be an equidimensional complex algebraic set and let f: X → ℂ be a polynomial function. For each c ∈ ℂ, we define the global Brasselet number of f at c, a global counterpart of the Brasselet number defined by the authors in a previous work, and the Brasselet number at infinity of f at c. Then we establish several formulas relating these numbers to the topology of X and the critical points of f.

Copyright

References

Hide All
1Artal, E., Luengo, I. and Melle, A.. On the topology of a generic fibre of a polynomial function. Comm. Algebr. 28 (2000), 17671787.
2Brasselet, J. P. and Schwartz, M. H.. Sur les classes de Chern d'un ensemble analytique complexe. Astérisque 82–83 (1981), 93147.
3Brasselet, J. P., , D. T. and Seade, J.. Euler obstruction and indices of vector fields. Topology 6 (2000), 11931208.
4Brasselet, J. P., Massey, D., Parameswaran, A. and Seade, J.. Euler obstruction and defects of functions on singular varieties. J. London Math. Soc. (2) 70 (2004), 5976.
5Broughton, S. A.. Milnor number and the topology of polynomial hypersurfaces. Invent. Math. 92 (1988), 217241.
6Brylinski, J., Dubson, A. and Kashiwara, M.. Formule de l'indice pour modules holonomes et obstruction d'Euler locale. C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), 573576.
7Dias, L. R. G.. On regularity conditions at infinity. J. Singul. 10 (2014), 5466.
8Dias, L. R. G., Ruas, M. A. S. and Tibăr, M.. Regularity at infinity of real mappings and a Morse-Sard theorem. J. Topol. 5 (2012), 323340.
9Dubson, A.. Classes caractéristiques des variétés singulières. C. R. Acad. Sci. Paris Sér. A-B 287 (1978), 237240.
10Dubson, A.. Calcul des invariants numériques des singularités et applications, Sonderforschungsbereich 40 Theoretische Mathematik. Universitaet Bonn (1981).
11Dutertre, N.. Euler obstruction and Lipschitz-Killing curvatures. Israel J. Math. 213 (2016), 109137.
12Dutertre, N. and Grulha, N. G. Jr. Lê-Greuel type formula for the Euler obstruction and applications. Adv. Math. 251 (2014), 127146.
13Dutertre, N. and Grulha, N. G., Jr. Some notes on the Euler obstruction of a function. J. Singul. 10 (2014), 8291.
14Goresky, M. and Mac-Pherson, R.. Stratified Morse theory (Berlin: Springer-Verlag, 1988).
15Grulha, N.G. Jr., The Euler obstruction and Bruce-Roberts Milnor number. Q. J. Math. 60 (2009), 291302.
16, H. V. and , D. T.. Sur la topologie des polynômes complexes. Acta Math. Vietnam. 9 (1984), 2132.
17, D. T.. Vanishing cycles on complex analytic sets. Proc. Sympos., Res. Inst. Math. Sci., Kyoto, Univ. Kyoto, 1975. Sûrikaisekikenkyûsho Kókyûroku, vol. 266, pp. 299318 (1976).
18, D. T.. Complex analytic functions with isolated singularities. J. Algebr. Geom. 1 (1992), 8399.
19, D. T. and Teissier, B.. Variétés polaires locales et classes de Chern des variétés singulières. Ann. Math. 114 (1981), 457491.
20, D. T. and Weber, C.. Polynômes à fibres rationnelles et conjecture jacobienne à 2 variables. C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 581584.
21Loeser, F.. Formules intégrales pour certains invariants locaux des espaces analytiques complexes. Comment. Math. Helv. 59 (1984), 204225.
22Mac-Pherson, R. D.. Chern classes for singular algebraic varieties. Ann. Math. 100 (1974), 423432.
23Massey, D. B.. Hypercohomology of Milnor fibres. Topology 35 (1996), 9691003.
24McCrory, C. and Parusinski, A.. Algebraically constructible functions. Ann. Sci. École Norm. Sup. (4) 30 (1997), 527552.
25Parusiński, A.. On the bifurcation set of complex polynomial with isolated singularities at infinity. Compositio Math. 97 (1995), 369384.
26Schürmann, J.. Topology of singular spaces and constructible sheaves. Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series),vol. 63, (Basel: Birkhauser Verlag, 2003).
27Schürmann, J. and Tibăr, M.. Index formula for MacPherson cycles of affine algebraic varieties. Tohoku Math. J. (2) 62 (2010), 2944.
28Seade, J., Tibăr, M. and Verjovsky, A.. Global Euler obstruction and polar invariants. Math. Ann. 333 (2005), 393403.
29Seade, J., Tibăr, M. and Verjovsky, A.. Milnor Numbers and Euler obstruction. Bull. Braz. Math. Soc. (N.S) 36 (2005), 275283.
30Siersma, D.. A bouquet theorem for the Milnor fibre. J. Algebr. Geom. 4 (1995), 5166.
31Siersma, D. and Tibăr, M.. Singularities at infinity and their vanishing cycles. Duke Math. J. 80 (1995), 771783.
32Siersma, D. and Tibăr, M.. On the vanishing cycles of a meromorphic function on the complement of its poles. Real and complex singularities. Contemp. Math., vol. 354, pp. 277289 (Providence, RI: Amer. Math. Soc., 2004).
33Siersma, D. and Tibăr, M.. Gauss-Bonnet defect of complex affine hypersurfaces. Bull. Sci. Math. 130 (2006), 110122.
34Suzuki, M.. Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l'espace ℂ2. J. Math. Soc. Japan 26 (1974), 241257.
35Tibăr, M.. Bouquet decomposition of the Milnor fibre. Topology 35 (1996), 227241.
36Tibăr, M.. Asymptotic equisingularity and topology of complex hypersurfaces. Internat. Math. Res. Notices 18 (1998), 979990.
37Tibăr, M.. Regularity at infinity of real and complex polynomial functions, singularity theory (Liverpool, 1996). London Math. Soc. Lecture Note Ser., vol. 263, pp. 249264 (Cambridge: Cambridge Univ. Press, 1999).
38Tibăr, M.. Singularities and topology of meromorphic functions, trends in singularities, pp. 223246 (Basel: Trends Math., Birkhäuser, 2002).
39Tibăr, M.. Vanishing cycles of pencils of hypersurfaces. Topology 43 (2004), 619633.
40Tibăr, M.. Duality of Euler data for affine varieties, singularities in geometry and topology 2004, Adv. Stud. Pure Math., vol. 46, pp. 251257 (Tokyo: Math. Soc. Japan, 2007).
41Tibăr, M.. Polynomials and vanishing cycles, Cambridge Tracts in Mathematics, vol. 170 (Cambridge: Cambridge University Press, 2007).
42Viro, O.. Some integral calculus based on Euler characteristic, topology and geometry, Rohlin Seminar. Lecture Notes in Math., vol. 1346, pp. 127138 (Berlin: Springer, 1988).

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed