Skip to main content Accessibility help
×
Home

Generalised factorisation for a class of Jones form matrix functions*

  • M. C. Câmara (a1), A. B. Lebre (a1) and F.-O. Speck (a1)

Synopsis

A systematic approach is proposed for the generalised factorisation of certain non-rational n × n matrix functions. The first main result consists in a transformation of a meromorphic into a generalised factorisation by algebraic means. It closes a gap between the classical Wiener-Hopf procedure and the operator theoretic method of generalised factorisation. Secondly, as examples we consider certain matrix functions of Jones form or of N-part form, which are equivalent to each other, in a sense. The factorisation procedure is complete and explicit, based only on the factorisation of scalar functions, of rational matrix functions and upon linear algebra. Applications in elastodynamic diffraction theory are treated in detail and in a most effective way.

Copyright

References

Hide All
1Câmara, M. C., Lebre, A. B. and Speck, F.-O.. Meromorphic factorization, partial index estimates and elastodynamic diffraction problems. Math. Nacr. (to appear).
2Chebotarev, G. N.. On the closed form solution of the Riemann boundary value problem for a system of n pairs of functions. Scientific Transactions of the Kazanskij State University V.I. Uljanov-Lenin 116, 4 (1956), 3158 (in Russian).
3Clancey, K. and Gohberg, I.. Factorization of Matrix Functions and Singular Integral Operators (Basel: Birkhäuser, 1981).
4Daniele, V. G.. On the factorization of Wiener-Hopf matrices in problems solvable with Hurd's method. I.E.E.E. Trans. Antennas Propag. AP-26 (1978), 614616.
5Daniele, V. G.. On the solution of two coupled Wiener-Hopf equations. SIAM J. Appl. Math. 44 (1984), 667680.
6Duduchava, R.. Integral Equations with Fixed Singularities (Leipzig: Teubern. 1979).
7Gakhov, F. D.. The Riemann contour problem for a system of n pairs of functions. Uspekhi Mat. Nauk 7, 4 (1952), 354.
8Gohberg, I. and Krupnik, N.. Einführung in die Theorie der eindimensionalen singulären Integraloperatoren (Basel: Birkhäuser, 1979).
9Hurd, R. A.. The explicit factorization of 2 ×2 Wiener-Hopf matrices (Preprint Nr. 1040, Fachbereich Mathematik, Technische Hochschule Darmstadt, 1987).
10Jones, D. S.. Theory of Electromagnetism (London: Pergamon, 1964).
11Jones, D. S.. Commutative Wiener-Hopf factorization of a matrix. Proc. R. Soc. London Ser. A 393 (1984), 185192.
12Kupradze, V. D.. Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity (Amsterdam: North-Holland, 1979).
13Lebre, A. B.. Operadores de Wiener-Hopf e Factorização de Símbolos (Ph. D. thesis, Instituto Superior Técnico, Lisboa, 1990).
14Lebre, A. B. and dos Santos, A. F.. Generalized factorization for a class of non-rational 2×2 matrix functions. Integral Equations Operator Theory 13 (1990), 671700.
15Litvinchuk, G. S. and Spitkovkii, I. M.. Factorization of Measurable Matrix Functions (Basel: Birkhäuser, 1987).
16Meister, E. and Speck, F.-O.. The explicit solution of elastodynamical diffraction problems by symbol factorization. Z. Anal. Anw. 8 (1989), 307328.
17Meister, E. and Speck, F.-O.. Wiener-Hopf factorisation of certain non-rational matrix functions in mathematical physics. In The Gohberg Anniversary Collection, Vol. II eds. Dym, H., Goldberg, S., Kaashoek, M. A. and Lancaster, P., Proc. Conf. Calgary 1988 385394 (Basel: Birkhäuser, 1989).
18Meister, E. and Speck, F.-O.. Modern Wiener-Hopf methods in diffraction theory. In Ordinary and Partial Differential Equations, Vol. 2, eds. Sleeman, B.D. and Jarvis, R. J., Proc. Conf. Dundee, 1988, 130177 (London: Longman, 1989).
19Mikhlin, S. G. and Prössdorf, S.. Singular Integral Operators (Berlin: Springer, 1986; in German, 1980).
20Noble, B.. Methods Based on the Wiener-Hopf Technique (London: Pergamon, 1958).
21Penzel, F. and Speck, F.-O.. Asymptotic expansion of singular operators on Sobolev spaces (to appear).
22Prossdorf, S.. Some Classes of Singular Equations (Amsterdam: North-Holland, 1978; in German, 1974).
23Prößdorf, S. and Speck, F.-O.. A factorisation procedure for two by two matrix functions on the circle with two rationally independent entries. Proc. R. Soc. Edinburgh Sect. A 115 (1990), 119138.
24Rawlins, A. D.. The explicit Wiener-Hopf factorisation of a special matrix. Z. Angew. Math. Mech. 61 (1981), 527528.
25Speck, F.-O.. General Wiener-Hopf Factorization Methods (London: Pitman, 1985).
26Talenti, G.. Sulle equazioni integrali di Wiener-Hopf. Boll. Un. Mat. Ital. 7, Suppl. fasc. 1 (1973), 18118.

Generalised factorisation for a class of Jones form matrix functions*

  • M. C. Câmara (a1), A. B. Lebre (a1) and F.-O. Speck (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed