Skip to main content Accessibility help

The G-closure of two well-ordered, anisotropic conductors

  • Yury Grabovsky (a1)


We give a complete solution to the G-closure problem for mixtures of two well-ordered possibly anisotropic conductors. Both the G-closure with fixed volume fractions and the full G-closure are computed. The conductivity tensors are considered in a fixed frame and no rotations are allowed.



Hide All
1Bensoussan, A., Lions, J. L. and Papanicolaou, G.. Asymptotic analysis of periodic structures (Amsterdam: North-Holland, 1978).
2Hashin, Z. and Shtrikman, S.. A variational approach to the theory of the effective magnetic permeability of multiphase materials, J. Appl. Phys. 33 (1962), 31253131.
3Kohn, R. V. and Milton, G. W.. On bounding the effective conductivity of anisotropic composites. In Homogenization and Effective Moduli of Materials and Media, eds Ericksen, J. et al., pp. 97125 (Berlin: Springer, 1986).
4Luríe, K. A. and Cherkaev, A. V.. Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportion, Proc. Roy. Soc. Edinburgh, Sect. A 99 (1984) 7187.
5Lurie, K. A. and Cherkaev, A. V.. Exact estimates of a binary mixture of isotropic components. Proc. Roy. Soc. Edinburgh Sect. A 104 (1986), 2138.
6Milton, G. W.. On characterizing the set of possible effective tensors of composites: the variational method and the translation method. Comm. Pure Appl. Math. 43 (1990), 63125.
7Milton, G. W. and Kohn, R. V.. Variational bounds on the effective moduli of anisotropic composites. J. Mech. Phys. Solids 36 (1988), 597–629.
8Nesi, V.. Using quasi-convex functionals to bound the effective conductivity of composite materials. Proc. Roy. Soc. Edinburgh Sect. A (1993, in print).
9Tartar, L.. Estimation fines des coefficients homogeneises. In Ennio de Giorgi's Colloquium, ed. Kree, P., pp. 168187 (London: Pitman, 1985).
10Wiener, W.. Abhandlungen der Mathematisch Physichen Klasse der Koniglischen Sachsischen Gesellschaft der Wissenschaften 32 (1912), 509.

The G-closure of two well-ordered, anisotropic conductors

  • Yury Grabovsky (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed