Skip to main content Accessibility help

Finite semilattices whose non-invertible endomorphisms are products of idempotents

  • M. E. Adams (a1), Sydney Bulman-Fleming (a2), Matthew Gould (a3) and Amy Wildsmith (a4)


For a finite semilattice S, is is proved that if every noninvertible endomorphism is a product of idempotents, then S is a chain; the converse was proved, independently, by A. Ya. Aĭzenštat and J. M. Howie. For a finite pseudocomplemented semilattice S, with pseudocomplementation regarded as a unary operation, it is proved that all noninvertible endomorphisms are products of idempotents if and only if S is Boolean or a chain.



Hide All
1Aîzenštat, A. Ya.. Defining relations of finite symmetric semigroups. Mat. Sb. N.S. 45(87) (1958), 261280 (in Russian).
2Aîzenštat, A. Ya.. The defining relations of the endomorphism semigroup of a finite linearly ordered set. Sibirsk. Mat. Zh. 3 (1962), 161169 (in Russian).
3Dawlings, R. J. H.. Products of idempotents in the semigroup of singular endomorphisms of a finite dimensional vector space. Proc. Roy. Soc. Edinburgh Sect. A 91 (1981), 123133.
4Erdos, J. A.. On products of idempotent matrices. Glasgow Math. J. 8 (1967), 118122.
5Grätzer, G.. General Lattice Theory (Basel and Stuttgart: Birkhauser, 1978).
6Howie, J. M.. The subsemigroup generated by the idempotents of a full transformation semigroup. J. London Math. Soc. 41 (1966), 707716.
7Howie, J. M.. Properties of idempotents in certain semigroups of transformations. Proc. Edinburgh Math. Soc. 17(2) (1971), 223236.
8Howie, J. M. and Schein, B. M.. Products of idempotent order-preserving transformations. J. London Math. Soc. 7 (1973), 357366.
9Magill, K. D.. Semigroups of functions generated by idempotents. J. London Math. Soc. 44 (1969), 236242.
10Magill, K. D.. The semigroup of endomorphisms of a Boolean ring. J. Austral. Math. Soc. 11 (1970), 411416.
11O'Meara, K.. Products of idempotents in regular rings. Glasgow Math. J. 28 (1986), 143152.
12Reynolds, M. A. and Sullivan, R. P.. Products of idempotent linear transformations. Proc. Roy. Soc. Edinburgh Sect. A 100 (1985), 123138.
13Thornton, M. C.. Semigroups of isotone selfmaps on partially ordered sets. J. London Math. Soc. 14 (1976), 545553.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed