Skip to main content Accessibility help
×
×
Home

EXPLICIT cocycle formulas on finite abelian groups with applications to braided linear Gr-categories and Dijkgraaf–Witten invariants

  • Hua-Lin Huang (a1), Zheyan Wan (a2) and Yu Ye (a2)

Abstract

We provide explicit and unified formulas for the cocycles of all degrees on the normalized bar resolutions of finite abelian groups. This is achieved by constructing a chain map from the normalized bar resolution to a Koszul-like resolution for any given finite abelian group. With a help of the obtained cocycle formulas, we determine all the braided linear Gr-categories and compute the Dijkgraaf–Witten Invariants of the n-torus for all n.

Copyright

References

Hide All
1Bulacu, D., Caenepeel, S. and Torrecillas, B.. The braided monoidal structures on the category of vector spaces graded by the Klein group. Proc. Edinburgh Math. Soc. 54 (2011), 613641.
2Chen, X., Gu, Z.-C., Liu, Z.-X. and Wen, X.-G.. Symmetry-protected topological orders in interacting bosonic systems. Science 338 (2012), 16041606.
3Chen, X., Gu, Z.-C., Liu, Z.-X. and Wen, X.-G.. Symmetry protected topological orders and the group cohomology of their symmetry group. Phys. Rev. B 87 (2013), 155114.
4de Wild Propitius, M.. Topological interactions in broken gauge theories. PhD thesis, University of Amsterdam, 1995.
5Dijkgraaf, R. and Witten, E.. Topological gauge theories and group cohomology. Commun. Math. Phys. 129 (1990), 393429.
6Eilenberg, S. and MacLane, S.. Cohomology theory of abelian groups and homotopy theory I. Proc. Natl. Acad. Sci. 36 (1950), 443447.
7Eilenberg, S. and MacLane, S.. Cohomology theory of abelian groups and homotopy theory II. Proc. Natl. Acad. Sci. 36 (1950), 657663.
8Etingof, P. and Gelaki, S.. Finite dimensional quasi-Hopf algebras with radical of codimension 2. Math. Res. Lett. 11 (2004), 685696.
9Etingof, P. and Gelaki, S.. On radically graded finite-dimensional quasi-Hopf algebras. Moscow Math. J. 5 (2005), 371378.
10Freed, D. S.. Higher algebraic structures and quantization. Commun. Math. Phys. 159 (1994), 343398.
11Frucht, R.. Über die Darstellung endlicher abelscher Gruppen durch Kollineationen. Journal für die reine und angewandte Mathematik (Crelles Journal) 166 (1932), 1629.
12Gelaki, S.. Basic quasi-Hopf algebras of dimension n 3. J. Pure Appl. Algebra 198 (2005), 165174.
13Hatcher, A.. Algebraic topology (Cambridge: Cambridge University Press, 2002).
14Hoàng, X. S.. Gr-catégories. PhD thesis, Université Paris VII, (1975).
15Hochschild, G. and Serre, J.-P.. Cohomology of group extensions. Trans. Amer. Math. Soc., 74 (1953), 110134.
16Hu, Y., Wan, Y. and Wu, Y.-S.. Twisted quantum double model of topological phases in two dimensions. Phys. Rev. B 87 (2013), 125114.
17Huang, H.-L., Liu, G. and Ye, Y.. Quivers, quasi-quantum groups and finite tensor categories. Commun. Math. Phys. 303 (2011), 595612.
18Huang, H.-L., Liu, G. and Ye, Y.. The braided monoidal structures on a class of linear Gr-categories. Algebr. Represent. Th. 17 (2014), 12491265.
19Huang, H.-L., Liu, G., Yang, Y. and Ye, Y.. Finite quasi-quantum groups of rank two. arXiv preprint arXiv:1508.04248 (2015).
20Huang, H.-L., Liu, G., Yang, Y. and Ye, Y.. Finite quasi-quantum groups of diagonal type. Journal für die reine und angewandte Mathematik (Crelles Journal) (2018). doi: 10.1515/crelle-2017-0058.
21Joyal, A. and Street, R.. Braided tensor categories. Adv. Math. 102 (1993), 2078.
22Karpilovsky, G.. Projective representations of finite groups, vol. 94, Monographs and Textbooks in Pure and Applied Mathematics (New York: Marcel Dekker Inc, 1985).
23Lyndon, R. C.. The cohomology theory of group extensions. Duke Math. J. 15 (1948), 271292.
24Moore, G. and Seiberg, N.. Classical and quantum conformal field theory. Commun. Math. Phys. 123 (1989), 177254.
25Turaev, V.. Dijkgraaf–Witten invariants of surfaces and projective representations of groups. J. Geom. Phys. 57 (2007), 24192430.
26Wan, Y., Wang, J. C. and He, H.. Twisted gauge theory model of topological phases in three dimensions. Phys. Rev. B 92 (2015), 045101.
27Wang, J. C. and Wen, X.-G.. Non-Abelian string and particle braiding in topological order: Modular SL(3, ℤ) representation and (3+1)-dimensional twisted gauge theory. Phys. Rev. B 91 (2015), 035134.
28Wang, J., Ohmori, K., Putrov, P., Zheng, Y., Wan, Z., Guo, M., Lin, H., Gao, P. and Yau, S.-T.. Tunneling topological vacua via extended operators:(Spin-) TQFT spectra and boundary deconfinement in various dimensions. Progr. Theor. Exp. Phys. 2018 (2018), 053A01.
29Wang, J. C., Gu, Z.-C. and Wen, X.-G.. Field-theory representation of gauge-gravity symmetry-protected topological invariants, group cohomology, and beyond. Phys. Rev. Lett. 114 (2015), 031601.
30Weibel, C. A.. An introduction to homological algebra, vol. 38, Cambridge Studies in Advanced Mathematics (Cambridge: Cambridge University Press, 1995).
31Wen, X.-G.. Exactly soluble local bosonic cocycle models, statistical transmutation, and simplest time-reversal symmetric topological orders in 3+1 dimensions. Phys. Rev. B 95 (2017), 205142.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Royal Society of Edinburgh Section A: Mathematics
  • ISSN: 0308-2105
  • EISSN: 1473-7124
  • URL: /core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed