1Cabré, X. and Sire, Y.. Nonlinear equations for fractional Laplacians, I: regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), 23–53.

2Caffarelli, L. and Silvestre, L.. An extension problem related to the fractional Laplacian. Comm. Partial Differ. Equ. 32 (2007), 1245–1260.

3Chang, X. and Wang, Z. Q.. Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian. J. Differ. Equ. 256 (2014), 2965–2992.

4Chen, G. Y. and Zheng, Y. Q.. Concentration phenomenon for fractional nonlinear Schrödinger equations. Commun. Pure Appl. Anal. 13 (2014), 2359–2376.

5Cheng, M.. Bound state for the fractional Schrödinger equation with unbounded potential. J. Math. Phys. 53 (2012), 043507.

6Cont, R. and Tankov, P.. Financial modelling with jump processes (Boca Raton, FL: Chapman & Hall/CRC Financ. Math. Ser., Chapman & Hall/CRC press, 2004).

7Coti Zelati, V. and Nolasco, M.. Existence of ground states for nonlinear pseudo relativistic Schrödinger equations. Rend. Lincei Mat. Appl. 22 (2011), 51–72.

8Crandall, M. G. and Rabinowitz, P. H.. Bifurcation, perturbation of simple eigenvalues and linearized stability. Arch. Ration. Mech. Anal. 52 (1973), 161–180.

9Dalfovo, F., Giorgini, S., Pitaevskii, L. P. and Stringari, S.. Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71 (1999), 463–512.

10Dávila, J., Del Pino, M. and Wei, J.. Concentration phenomenon for fractional nonlinear Schrödinger equations. J. Differ. Equ. 256 (2014), 858–892.

11del Pino, M. and Felmer, P.. Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4 (1996), 121–137.

12Di Nezza, E., Palatucci, G. and Valdinoci, E.. Hitchhiker's guide to the fractional sobolev spaces. Bull. des Sci. Math. 136 (2012), 521–573.

13Dipierro, S., Palatucci, G. and Valdinoci, E.. Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian. Matematiche 68 (2013), 201–216.

14Fall, M. M. and Valdinoci, E.. Uniqueness and nondegeneracy of positive solutions of (−Δ)^{s} *u* + *u* = *u* ^{p} in ℝ^{N} when *s* is close to 1. Commun. Math. Phys. 329 (2014), 383–404.

15Felmer, P., Quaas, A. and Tan, J.. Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian. Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), 1237–1262.

16Foler, A. and Weinstein, A.. Nonspreading wave packets for the cubic Schrödinger equations. J. Funct. Anal. 69 (1986), 397–408.

17Frank, R. and Lenzmann, E.. Uniqueness and nondegeneracy of ground states for (−Δ)^{s} *Q* + *Q* − *Q* ^{α} + = 0 in ℝ. Acta Math. 210 (2013), 261–318.

18Frank, R., Lenzmann, E. and Silvestre, L.. Uniqueness of radial solutions for the fractional Laplacian. Communications on Pure and Applied Mathematics 69 (2016), 1671–1726.

19Guo, Y. J. and Seiringer, R.. on the mass concentration for Bose-Einstein condensation with attractive interactions. Lett. Math. Phys. 104 (2014), 141–156.

20Guo, Y. J., Wang, Z. Q., Zeng, X. Y. and Zhou, H. S.. Properties for ground states of attractive Gross-Pitaevskii equations with multi-well potentials, e-print arXiv: 1502.01839.

21Guo, Y. J., Zeng, X. Y. and Zhou, H. S.. Energy estimates and symmetry breaking in attractive Bose-Einstein condensation with ring-shaped potential. Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016), 809–828.

22Jackson, R. K. and Weinstein, M. I.. Geometric analysis of bifurcation and symmetry breaking in a Gross-Pitaevskii equation. J. Stat. Phys. 116 (2004), 881–905.

23Kirr, E. W., Kevrekidis, P. G., Shlizerman, E. and Weinstein, M. I.. Symmetry-breaking bifurcation in the nonlinear Schrödinger/Gross-Pitaevskii equations. SIAM J. Math. Anal. 40 (2008), 566–604.

24Kirr, E. W., Kevrekidis, P. G. and Pelinovsky, D. E.. Symmetry-breaking bifurcation in the nonlinear Schrödinger equation with symmetric potentials. Comm. Math. Phys. 308 (2011), 795–844.

25Laskin, N.. Fractional quantum mechanics and lévy path integrals. Phys. Lett. A 268 (2000), 298–305.

26Laskin, N.. Fractional Schrödinger equation. Phys. Rev. E 66 (2002), 56–108.

27Lieb, E. H. and Loss, M.. Analysis, graduate studies in mathematics,vol. 14, 2nd edn (Providence: American Mathematical Society, 2001).

28Lions, P. L.. The concentration-compactness principle in the calculus of variations. The locally compact case, part I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109–145.

29Oh, Y. G.. On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Comm. Math. Phys. 131 (1990), 223–253.

30Pitaevskii, L. P.. Vortex lines in an imperfect Bose gas. Sov. Phys, JETP 13 (1961), 451–454.

31Rabinowitz, P. H.. On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43 (1992), 270–291.

32Secchi, S.. Ground state solutions for nonlinear fractional Schrödinger equations in ℝ^{N}. J. Math. Phys. 54 (2013), 031501.

33Secchi, S.. On fractional Schrödinger equations in ℝ^{N} without the Ambrosetti-Rabinowitz condition, e-print arXiv:1210.0755.

34Servadei, R. and Valdinoci, E.. The Brezis–Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367 (2015), 67–102.

35Shang, X. and Zhang, J.. Concentrating solutions of nonlinear fractional Schrödinger equation with potentials. J. Differ. Equ. 258 (2015), 1106–1128.

36Silvestre, L.. Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 60 (2007), 67–112.

37Tan, J.. The Brezis–Nirenberg type problem involving the square root of the Laplacian. Calc. Var. Partial Differ. Equ. 42 (2011), 21–41.

38Wang, X.. On concentration of positive bound states of nonlinear Schrödinger equations. comm. Math. Phys. 153 (1993), 229–244.

39Weinstein, M. I.. Nonlinear Schrödinger equations and Sharp interpolation estimates. comm. Math. Phys. 87 (1983), 567–576.

40Willem, M.. Minimax theorems (Boston: Birkhäuser, 1996).