Skip to main content Accessibility help

Decay rates of the solutions of nonlinear dispersive equations

  • Vanilde Bisognin (a1) and Gustavo Perla Menzala (a2)


We consider a family of dispersive equations whose simplest representative would be a Benjamin–Bona–Mahony equation with a Burger's type dissipation. The effect of possible unevenness of the bottom surface is considered and our main result gives decay rates of the solutions in Lβ(ℝ) spaces, 2 ≦ β ≦ + ∞.



Hide All
1Abdelouhad, L.. Nonlocal dispersive equations in weighted Sobolev spaces. Differential Integral Equations 5 (2) (1992), 307338.
2Adams, R. A.. Sobolev Spaces (New York: Academic Press, 1975).
3Amick, C. J., Bona, J. L. and Schonbek, M. E.. Decay of solutions of some nonlinear wave equations. J. Differential Equations 81 (1989), 149.
4Bergh, J. and Lofstrom, J.. Interpolation Spaces–An Introduction (Berlin: Springer, 1976).
5Biler, P.. Asymptotic behaviour in time of some equations generalising Korteweg de Vries-Burgers. Bull. Polish Acad. Sci. 32 (1984), m275282.
6Bona, J. L. and Smith, R.. The initial value problem for the Korteweg de Vries equation. Philos. Trans. Roy. Soc. London Ser. A 278 (1975), 555604.
7Dix, D.. Temporal asymptotic behaviour of solutions of the Benjamin-Ono-Burgers equation. J. Differential Equations 81 (1991), 238287.
8Johnson, R. S.. On the development of a solitary wave moving over an uneven bottom. Proc. Cambridge Philos. Sci. 73 (1973), 183203.
9Kakutani, T.. Effect of an uneven bottom on gravity waves. J. Phys. Soc. Japan 30 (1) (1971), 272276.
10Racke, R.. Lectures on nonlinear evolution equations–Initial value problems. Aspects of Math. (Braunschweig: Vieweg, 1991).
11Souganidis, P. E. and Strauss, W. A.. Instability of a class of dispersive solitary waves. Proc. Roy. Soc. Edinburgh Sect A 114 (1990), 195212.
12Strauss, W. A.. Decay and asymptotics for ⋳u = F(u). J. Fund. Anal. 2 (1968), 409457.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed