Skip to main content Accessibility help
×
Home

Asymptotically self-similar behaviour of global solutions for semilinear heat equations with algebraically decaying initial data

  • Yūki Naito (a1)

Abstract

We consider the Cauchy problem

$$\left\{ {\matrix{ {u_t = \Delta u + u^p,\quad } \hfill & {x\in {\bf R}^N,\;t \leq 0,} \hfill \cr {u(x,0) = u_0(x),\quad } \hfill & {x\in {\bf R}^N,} \hfill \cr } } \right.$$
where N > 2, p > 1, and u0 is a bounded continuous non-negative function in RN. We study the case where u0(x) decays at the rate |x|−2/(p−1) as |x| → ∞, and investigate the convergence property of the global solutions to the forward self-similar solutions. We first give the precise description of the relationship between the spatial decay of initial data and the large time behaviour of solutions, and then we show the existence of solutions with a time decay rate slower than the one of self-similar solutions. We also show the existence of solutions that behave in a complicated manner.

Copyright

References

Hide All
1Busca, J., Jendoubi, M. A. and Poláčik, P.. Convergence to equilibrium for semilinear parabolic problems in RN. Comm. Partial Differ. Equ. 27 (2002), 17931814.
2Cazenave, T. and Haraux, A.. An introduction to semilinear evolution equations (New York: Oxford University Press, 1998).
3Cazenave, T. and Weissler, F. B.. Asymptotically self-similar global solutions of the nonlinear Schr”odinger and heat equations. Math. Z. 228 (1998), 83120.
4Cazenave, T., Dickstein, F. and Weissler, F.. Universal solutions of a nonlinear heat equation on R N. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2 (2003), 77117.
5Cazenave, T., Dickstein, F. and Weissler, F.. Multi-scale multi-profile global solutions of parabolic equations in RN. Discrete Contin. Dyn. Syst. Ser. S 5 (2012), 449472.
6Cortázar, C., del Pino, M. and Elgueta, M.. The problem of uniqueness of the limit in a semilinear heat equation. Comm. Partial Differ. Equ. 24 (1999), 21472172.
7Feireisl, E. and Petzeltová, H.. Convergence to a ground state as a threshold phenomenon in nonlinear parabolic equations. Differ. Integral. Equ. 10 (1997), 181196.
8Fila, M., Winkler, M. and Yanagida, E.. Grow-up rate of solutions for a supercritical semilinear diffusion equation. J. Differ. Equ. 205 (2004), 365389.
9Fila, M., Winkler, M. and Yanagida, E.. Convergence rate for a parabolic equation with supercritical nonlinearity. J. Dynam. Differ. Equ. 17 (2005), 249269.
10Fila, M., King, J. R., Winkler, M. and Yanagida, E.. Optimal lower bound of the grow-up rate for a supercritical parabolic equation. J. Differ. Equ. 228 (2006), 339356.
11Fila, M., Winkler, M. and Yanagida, E.. Convergence to self-similar solutions for a semilinear parabolic equation. Discrete Contin. Dyn. Syst. 21 (2008), 703716.
12Fujita, H.. On the blowing up of solutions of the Cauchy problem for u t = Δu + u 1 + α. J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109124.
13Galaktionov, V. A. and Vazquez, J. L.. Continuation of blowup solutions of nonlinear heat equations in several space dimensions. Comm. Pure Appl. Math. 50 (1997), 167.
14Gui, C., Ni, W.-M. and Wang, X.. On the stability and instability of positive steady states of a semilinear heat equation in R n. Comm. Pure Appl. Math. 45 (1992), 11531181.
15Gui, C., Ni, W.-M. and Wang, X.. Further study on a nonlinear heat equation. J. Differ. Equ. 169 (2001), 588613.
16Haraux, A. and Weissler, F. B.. Non-uniqueness for a semilinear initial value problem. Indiana Univ. Math. J. 31 (1982), 167189.
17Hoshino, M. and Yanagida, E.. Sharp estimates of the convergence rate for a semilinear parabolic equation with supercritical nonlinearity. Nonlinear Anal. TMA 69 (2008), 31363152.
18Joseph, D. D. and Lundgren, T. S.. Quasilinear Dirichlet problems driven by positive sources. Arch. Rational Mech. Anal. 49 (1972/73), 241269.
19Kavian, O.. Remarks on the large time behavior of a nonlinear diffusion equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), 423452.
20Kawanago, T.. Asymptotic behavior of solutions of a semilinear heat equation with subcritical nonlinearity. Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), 115.
21Lee, T.-Y. and Ni, W.-M.. Global existence, large time behavior and life span of solutions of a semilinear parabolic Cauchy problem. Trans. Amer. Math. Soc. 333 (1992), 365378.
22Naito, Y.. Non-uniqueness of solutions to the Cauchy problem for semilinear heat equations with singular initial data. Math. Ann. 329 (2004), 161196.
23Naito, Y.. An ODE approach to the multiplicity of self-similar solutions for semi-linear heat equations. Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), 807835.
24Naito, Y.. Self-similar solutions for a semilinear heat equation with critical Sobolev exponent. Indiana Univ. Math. J. 57 (2008), 12831315.
25Naito, Y.. The role of forward self-similar solutions in the Cauchy problem for semilinear heat equations. J. Differ. Equ. 253 (2012), 30293060.
26Naito, Y.. Convergence rate in the weighted norm for a semilinear heat equation with supercritical nonlinearity. Kodai Math. J. 37 (2014), 646667.
27Naito, Y.. Global attractivity and convergence rate in the weighted norm for a supercritical semilinear heat equation. Differ. Integral. Equ. 28 (2015), 777800.
28Peletier, L. A., Terman, D. and Weissler, F. B.. On the equation $\Delta u + {\textstyle{1 \over 2}}x\cdot \nabla u + f(u) = 0$. Arch. Rational Mech. Anal. 94 (1986), 8399.
29Poláčik, P. and Yanagida, E.. On bounded and unbounded global solutions of a supercritical semilinear heat equation. Math. Ann. 327 (2003), 745771.
30Poláčik, P. and Yanagida, E.. Nonstabilizing solutions and grow-up set for a supercritical semilinear diffusion equation. Differ. Integral. Equ. 17 (2004), 535548.
31Quittner, P. and Souplet, P.. Superlinear parabolic problems (Basel: Birkhauser Verlag, 2007).
32Snoussi, S., Tayachi, S. and Weissler, F.B.. Asymptotically self-similar global solutions of a general semilinear heat equation. Math. Ann. 321 (2001), 131155.
33Souplet, P. and Weissler, F. B.. Regular self-similar solutions of the nonlinear heat equation with initial data above the singular steady state. Ann. Inst. H. Poincare Anal. Non Lineaire 20 (2003), 213235.
34Stinner, C.. Very slow convergence rates in a semilinear parabolic equation. NoDEA Nonlinear Differ. Equ. Appl. 17 (2010), 213227.
35Stinner, C.. The convergence rate for a semilinear parabolic equation with a critical exponent. Appl. Math. Lett. 24 (2011), 454459.
36Wang, X.. On the Cauchy problem for reaction-diffusion equations. Trans. Amer. Math. Soc. 337 (1993), 549590.
37 Yanagida, E.. Dynamics of global solutions of a semilinear parabolic equation. In Recent progress on reaction-diffusion systems and viscosity solutions (eds. Yihong Du, Hitoshi Ishii and Wei-Yueh), pp. 300331 (Hackensack, NJ: World Sci. Publ., 2009).

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed