Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-11T19:34:08.689Z Has data issue: false hasContentIssue false

Analysis of bifurcations in reaction–diffusion systems with no-flux boundary conditions: the Sel'kov model

Published online by Cambridge University Press:  14 November 2011

J. E. Furter
Affiliation:
Mathematics Institute, University of Warwick, Coventry CV4 7AL, U.K.
J. C. Eilbeck
Affiliation:
Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, U.K.

Abstract

A plot of the bifurcation diagram for a two-component reaction-diffusion equation with no-flux boundary conditions reveals an intricate web of competing stable and unstable states. By studying the one-dimensional Sel'kov model, we show how a mixture of local, global and numerical analysis can make sense of several aspects of this complex picture. The local bifurcation analysis, via the power of singularity theory, gives us a framework to work in. We can then fill in the details with numerical calculations, with the global analytic results fixing the outline of the solution set. Throughout, we discuss to what extent our results can be applied to other models.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Armbruster, D. and Dangelmayr, G.. Corank-two bifurcations for the Brusselator with non-flux boundary conditions. Dynamics Stability Systems 1 (1986), 187200.CrossRefGoogle Scholar
2Armbruster, D. and Dangelmayr, G.. Coupled stationary bifurcations in non-flux boundary conditions. Math. Proc. Cambridge Philos. Soc. 101 (1987), 167191.CrossRefGoogle Scholar
3Ashkenazi, M. and Othmer, H. G.. Special patterns in coupled biochemical oscillators. J. Math. Biol. 5(1978), 305350.Google Scholar
4Aston, P.. Scaling laws and bifurcation. In Singularity Theory and its Applications. Warwick 1989, Part II, vol. 1463, eds Stewart, I. N. and Roberts, R. M., pp. 121 (Berlin: Springer, 1991).CrossRefGoogle Scholar
5Brown, K. J. and Eilbeck, J. C.. Bifurcation, stability diagrams, and varying diffusion coefficients in reaction-diffusion equations. Bull. Math. Biol. 44 (1982), 87102.CrossRefGoogle Scholar
6Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zang, T. A.. Spectal Methods in Fluid Mechanics (Berlin: Springer, 1987).Google Scholar
7Catalano, G., Eilbeck, J. C., A. Monroy and E. Parisi. A mathematical model for pattern formation in biological systems. Phys. D 3 (1981), 439456.Google Scholar
8Crawford, J., Golubitsky, M., Gomes, M. G. M., Knobloch, E. and Stewart, I. N.. Boundary conditions as symmetry constraints. In Singularity Theory and its Applictions. Warwick 1989, Part II, vol. 1463, eds Stewart, I. N. and Roberts, R. M., pp. 6379 (Berlin: Springer, 1991).CrossRefGoogle Scholar
9Duncan, K. and Eilbeck, J. C.. Numerical studies of symmetry-breaking bifurcations in reaction-diffusion systems. In Biomathematics and Related Computational Problems, ed. Ricciardi, L. M., pp. 439448 (Dordrecht: Kluwer, 1988).CrossRefGoogle Scholar
10Eilbeck, J. C.. The pseudo-spectral method and path following in reaction-diffusion bifurcation studies. SIAM J. Sci. Statist. Comput. 7 (1986), 599610.CrossRefGoogle Scholar
11Eilbeck, J. C.. Numerical studies of bifurcation in reaction-diffusion models using pseudo-spectral and path-following methods. In Bifurcation: Analysis, Algorithms, Applications, eds Kiipper, T., Seydel, R. and Troger, H., pp. 4760 (Basel: Birkhauser, 1987).CrossRefGoogle Scholar
12Eilbeck, J. C.. Pattern formation and pattern selection in reaction-diffusion systems. In Theoretical Biology: Epigenetic and Evolutionary Order (Waddington Memorial Conference papers), eds Goodwin, B. and Saunders, P. T., pp. 3141 (Edinburgh: Edinburgh University Press, 1989).Google Scholar
13Eilbeck, J. C. and Furter, J. E.. Understanding steady-state bifurcation diagrams for a model reaction-diffusion system. In Continuation and Bifurcation: Numerical Techniques and Applications, eds Spence, A., Roose, D. and Dier, B. de, pp. 2543 (Dordrecht: Kluwer, 1990).CrossRefGoogle Scholar
14Fujii, H., Mimura, M. and Nishiura, Y.. A picture of the global bifurcation diagram in ecological interacting and diffusing system. Phys. D 5 (1982), 142.CrossRefGoogle Scholar
15Fujii, H., Nishiura, Y. and Hosono, Y.. On the structure of multiple existence of stable stationary solutions in systems of RD equations. Stud. Math. Appl. 18 (1986), 157219.Google Scholar
16Furter, J. E.. Remarks on scaling laws and bifurcation problems equivariant under a monoid of injective linear maps (Preprint, University of Warwick, 1990).Google Scholar
17Furter, J. E.. On the bifurcation of subharmonics in reversible systems. In Singularity Theory and its Applications. Warwick 1989, Part II, vol. 1463, eds Stewart, I. N. and Roberts, R. M., pp. 167192 (Berlin: Springer, 1991).CrossRefGoogle Scholar
18Golubitsky, M. and Schaeffer, D.. Singularities and Groups in Bifurcation Theory, Appl. Math. Sci. 51 (Berlin: Springer, 1985).CrossRefGoogle Scholar
19Golubitsky, M., Schaeffer, D. and Stewart, I. N.. Singularities and Groups in Bifurcation Theory II, Appl. Math. Sci. 69 (Berlin: Springer, 1988).CrossRefGoogle Scholar
20Gomes, G.. Bifurcations on generalized rectangles: the right context (Ph.D Thesis, University of Warwick, 1992).Google Scholar
21Hunding, A.. Dissipative structures in reaction-diffusion systems: numerical determination of bifurcations in the sphere. J Chem. Phys. 72 (1980), 52415248.CrossRefGoogle Scholar
22Hunding, A. and Sorensen, P.. Size adaptation in Turing prepatterns. J. Math. Biol. 26 (1988), 2739.CrossRefGoogle ScholarPubMed
23Lopez-Gómez, J., Duncan, K. N., Eilbeck, J. C. and Molina, M.. Structure of solution manifolds in a strongly coupled elliptic system. IMA J. Numer. Anal. 12 (1992), 405428.CrossRefGoogle Scholar
24Merkin, J. H., Needham, D. J. and Scott, S. K.. Oscillatory chemical reactions in closed vessels. Proc. Roy. Soc. London Ser. A 406 (1986), 299323.Google Scholar
25Murray, J. D.. Nonlinear Differential Equation Models in Biology (Oxford: Clarendon Press, 1977).Google Scholar
26Murray, J. D.. Mathematical Biology, Biomaths. Texts 19 (Berlin: Springer, 1989).CrossRefGoogle Scholar
27Nishiura, Y. Global structure of bifurcating solutions of some reaction-diffusion systems. SIAM J. Math. Anal. 13 (1982), 555593.CrossRefGoogle Scholar
28Prigogene, I. and Lefever, R.. Symmetry breaking instabilities in dissipative systems. II. J. Chem. Phys. 48(1968), 1665–700.Google Scholar
29Schaff, R.. A class of hamiltonian systems with increasing period. J. Reine Angew. Math. 363 (1985), 96109.Google Scholar
30Schnakenberg, J.. Simple chemical reaction systems with limit cycle behaviour. J. Theoret. Biol. 81 (1979), 389400.CrossRefGoogle ScholarPubMed
31Scott, S. and Gray, P.. Chemical reactions in isothermal systems: oscillations and instabilities. In Non Linear Phenomena and Chaos, ed. Sarker, S., pp. 7096 (Bristol: Adam Hilger, 1986).Google Scholar
32Scovel, K. C., Kevrekidis, I. G. and Nicolaenko, B.. Scaling laws and the prediction of bifurcations in systems modelling pattern formation. Phys. Lett. A. 130 (1988), 7380.CrossRefGoogle Scholar
33Sel'kov, E. E.. Self-oscillations in glycolysis. European J. Biochem. 4 (1968), 7986.CrossRefGoogle ScholarPubMed
34Sevryuk, M. B.. Reversible Systems, Lecture Notes in Mathematics 1211 (Berlin: Springer, 1986).Google Scholar
35Seydel, R.. From Equilibrium to Chaos–Practical Bifurcation and Stability Analysis (London; Elsevier, 1988).Google Scholar
36Takagi, I.. Point condensation for a reaction–diffusion system. Differential Equations 61 (1986), 208249.CrossRefGoogle Scholar
37Vanderbauwhede, A.. Branching of periodic solutions in time-reversible systems (Preprint, Rijksuniversiteit Gent, 1990).Google Scholar
38Wake, G. C., Graham-Eagle, J. G. and Gray, B. F.. Oscillating Chemical Reactions: The Well-Stirred and Spatially Distributed Cases (Providence, RI: American Mathematical Society, 1988).Google Scholar
39Wolfram, S.. Mathematica, 2nd edn (New York: Addison-Wesley, 1991).Google Scholar