No CrossRef data available.
Article contents
Existence of weak solutions to an anisotropic parabolic–parabolic chemotaxis system
Published online by Cambridge University Press: 06 March 2023
Abstract
This work is devoted to the study of the sub-critical case of an anisotropic fully parabolic Keller–Segel chemotaxis system. We prove the existence of nonnegative weak solutions of (1.1) without restriction on the size of the initial data.
MSC classification
Primary:
35K57: Reaction-diffusion equations
Secondary:
35B33: Critical exponents
- Type
- Research Article
- Information
- Copyright
- Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh
References
Adler, J.. Chemotaxis in bacteria. Annu. Rev. Biochem. 44 (1975), 341–356.CrossRefGoogle ScholarPubMed
Antontsev, S. and Shmarev, S.. Evolution PDEs with nonstandard growth conditions: existence, uniqueness, localization, blow-up, Atlantis Studies in Differential Equations (Atlantis Press, 2015).Google Scholar
Antontsev, S. and Shmarev, S.. Anisotropic parabolic equations with variable nonlinearity. Publ. Mat, 53 (2009), 355–399.CrossRefGoogle Scholar
Bonner, J. T.. The Cellular Slime Molds, 2nd edn. (Princeton, Princeton University Press, 1967).CrossRefGoogle Scholar
Düzgün, F. G., Mosconi, S. and Vespri, V.. Anisotropic Sobolev embeddings and the speed of propagation for parabolic equations. J. Evol. Equ. 19 (2019), 845–882.Google Scholar
El Bahja, H.. Obstacle problem of a nonlinear anisotropic parabolic equation. Ric. Mat. 5 (2021), 733–762. doi: 10.1007/s11587-021-00559-3Google Scholar
El Bahja, H.. Bounded nonnegative weak solutions to anisotropic parabolic double phase problems with variable growth, Appl. Anal. (2021), 1–14. doi: 10.1080/00036811.2021.2021191CrossRefGoogle Scholar
Esfahani, A.. Anisotropic Gagliardo-Nirenberg inequality with fractional derivatives. Z. Angew. Math. Phys. 66 (2015), 3345–3356.CrossRefGoogle Scholar
Evans, L. C.. Partial differential equations, Vol. 19 (Providence, RI: American Mathematical Society, 1998).Google Scholar
Galiano, G., Garzón, M. and Jüngel, A.. Analysis and numerical solution of a nonlinear cross-diffusion system arising in population dynamics. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 95 (2001), 281–295.Google Scholar
Gurney, W. S. and Nisbet, R. M.. The regulation of inhomogeneous populations. J. Theor. Biol. 52 (1975), 441–457.CrossRefGoogle ScholarPubMed
Ishida, S. and Yokota, T.. Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. J. Differ. Equ. 252 (2012), 1421–1440.Google Scholar
Globale existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data. J. Differ. Equ. 252 (2012), 2469–2491.CrossRefGoogle Scholar
Ishida, S., Ono, T. and Yokota, T.. Possibility of the existence of blow-up solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Math. Methods Appl. Sci. 36 (2013), 745–760.Google Scholar
Ishida, S. and Yokota, T.. Blow-up infinite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete Contin. Dyn. Syst. Ser. B 18 (2013), 2569–2596.Google Scholar
Kawasaki, K., Mochizuki, A., Matsushita, M., Umeda, T. and Shigesada, N.. Modeling spatio-temporal patterns generated by Bacillus subtilis. J. Theor. Biol. 188 (1997), 177–185.CrossRefGoogle ScholarPubMed
Keller, E. F. and Segel, L. A.. Initiation of slide mold aggregation viewed as an instability. J.Theoret.Biol. 26 (1970), 399–415.Google Scholar
Ohgiwari, M., Matsushita, M. and Matsuyama, T.. Morphological changes in growth phenomena of bacterial colony patterns. J. Phys. Soc. Jpn. 61 (1992), 816–822.CrossRefGoogle Scholar
Patlak, C. S.. Random walk with persistence and external bias. Bull. Math. Biophys. 15 (1953), 311–338.CrossRefGoogle Scholar
Rosen, G.. Steady-state distribution of bacteria chemotactic toward oxygen. Bull. Math. Biol. 40 (1978), 671–674.CrossRefGoogle ScholarPubMed
Simon, J.. Compact sets in the space $L^p(0,T;B)$
. Ann. Mat. Pura Appl. 146 (1987), 65–96.CrossRefGoogle Scholar

Sugiyama, Y.. Global existence in the sub-critical cases and finite time blow-up in the super-critical cases to degenerate Keller-Segel systems. Differ. Int. Equ. 19 (2006), 841–876.Google Scholar
Sugiyama, Y.. Time global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems of chemotaxis. Differ. Int. Equ. 20 (2007), 133–180.Google Scholar
Sugiyama, Y. and Kunii, H.. Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term. J. Differ. Equ. 227 (2006), 333–364.CrossRefGoogle Scholar
Szymanska, Z., Morales-Rodrigo, C., Lachowicz, M. and Chaplain, M.. Mathematical modelling of cancer invasion tissue: the role and effect of nonlocal interactions. Math. Models Methods Appl. Sci. 19 (2009), 257–281.CrossRefGoogle Scholar
Tao, Y.. Boundedness in a chemotaxis model with oxygen consumption by bacteria. J. Math. Anal. Appl. 38 (2011), 1521–1529.Google Scholar
Tao, Y. S. and Winkler, M.. Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemo-taxis system with consumption of chemoattractant. J. Differ. Equ. 252 (2012), 2520–2543.CrossRefGoogle Scholar
Wakita, J., Komatsu, K., Nakahara, A., Matsuyama, T. and Matsushita, M.. Experimental investigation on the validity of population dynamics approach to bacterial colony formation. J. Phys. Soc. Jpn. 63 (1994), 1205–1211.CrossRefGoogle Scholar
Winkler, M.. Does a ‘volume-filling effect’ always prevent chemo tactic collapse. Math. Methods Appl. Sci. 33 (2010), 12–24.CrossRefGoogle Scholar
Xu, T. Y., Ji, S. M., Jin, C. H., Mei, M. and Yin, J. X.. Early and late stage profiles for a chemotaxis model with density-dependent jump probability. Math. Biosci. Eng. 15 (2018), 1345–1385.CrossRefGoogle ScholarPubMed
Yan, J. and Li, Y.. Global generalized solutions to a Keller-Segel system with nonlinear diffusion and singular sensitivity. Nonlinear Anal. 176 (2018), 288–302.Google Scholar