Skip to main content Accessibility help
×
Home

Contents:

Information:

  • Access

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Short-chain fatty acid receptor GPR43 is expressed in canine enteroendocrine L cells
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        Short-chain fatty acid receptor GPR43 is expressed in canine enteroendocrine L cells
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        Short-chain fatty acid receptor GPR43 is expressed in canine enteroendocrine L cells
        Available formats
        ×
Export citation

Short-chain fatty acids (SCFA), including acetate, propionate and butyrate, are products of intestinal microbial fermentation. Apart from being absorbed as nutrients across the intestine, SCFA influence various physiological processes in the intestinal tract including intestinal motility, colonic barrier function, and secretion of the gut hormones glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) (Reference Ono, Karaki and Kuwahara1Reference Gee and Johnson3). Both hormones are involved the regulation of digestive functioning and appetite(Reference Capasso and Izzo4). In addition, SCFA could play a role in pathophysiological processes, including inflammation and colorectal carcinogenesis (Reference Maslowski and Mackay5, Reference DArgenio, Cosenza and Delle Cave6). SCFA can activate the G protein-coupled receptor 43 (GPR43, also known as FFA2), which is equally sensitive to acetate, propionate, and butyrate (Reference Brown, Goldsworthy and Barnes7).

In this study, three adult female Beagle dogs were fed with a standard diet containing 2.4% crude fibre for at least 2 weeks. Dogs were sacrificed and digesta were collected from the duodenum, jejunum, ileum, and proximal colon for measuring SCFA concentrations. In addition, tissues of the same segments were collected for determining the cellular distribution of GPR43 by immunohistochemistry. Acetate concentration in the colon was higher than in the three small intestinal segments. Propionate and butyrate concentrations in the small intestinal segments were insignificant. Immunostaining for GPR43 was distributed in the mucosa along the whole intestine, with highest expression in the ileum. Strikingly, GPR43 expression was predominantly found in enteroendocrine L cells as these cells were also immune-positive for GLP-1 and/or PYY.

Our data suggest that in dogs acetate is the main SCFA-effector of GPR43 in the intestine and that GPR43, and thus SCFA, play a regulatory role in secretion of GLP-1 and PYY.

1.Ono, S, Karaki, S & Kuwahara, A (2004) Jpn J Physiol 54, 483493.
2.Suzuki, T, Yoshida, S & Hara, H (2008) Br J Nutr 100, 297305.
3.Gee, JM & Johnson, IT (2005) Nutrition 21, 10361043.
4.Capasso, A & Izzo, A (2008) J Neuroendocrinol 20, 3946.
5.Maslowski, KM & Mackay, CR (2011) Nat Immunol 12, 59.
6.DArgenio, G, Cosenza, V, Delle Cave, M et al. (1996) Gastroenterology 110, 17271734.
7.Brown, AJ, Goldsworthy, SM, Barnes, AA et al. (2003) J Biol Chem 278, 1131211319.