Skip to main content Accessibility help
×
Home

Satiety-enhancing products for appetite control: science and regulation of functional foods for weight management

  • Jason C. G. Halford (a1) and Joanne A. Harrold (a1)

Abstract

The current review considers satiety-based approaches to weight management in the context of health claims. Health benefits, defined as beneficial physiological effects, are what the European Food Safety Authority bases their recommendations on for claim approval. The literature demonstrates that foods that target within-meal satiation and post-meal satiety provide a plausible approach to weight management. However, few ingredient types tested produce the sustainable and enduring effects on appetite accompanied by the necessary reductions in energy intake required to claim satiety/reduction in hunger as a health benefit. Proteins, fibre types, novel oils and carbohydrates resistant to digestion all have the potential to produce beneficial short-term changes in appetite (proof-of-concept). The challenge remains to demonstrate their enduring effects on appetite and energy intake, as well as the health and consumer benefits such effects provide in terms of optimising successful weight management. Currently, the benefits of satiety-enhancing ingredients to both consumers and their health are under researched. It is possible that such ingredients help consumers gain control over their eating behaviour and may also help reduce the negative psychological impact of dieting and the physiological consequences of energy restriction that ultimately undermine weight management. In conclusion, industry needs to demonstrate that a satiety-based approach to weight management, based on single-manipulated food items, is sufficient to help consumers resist the situational and personal factors that drive overconsumption. Nonetheless, we possess the methodological tools, which when employed in appropriate designs, are sufficient to support health claims.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Satiety-enhancing products for appetite control: science and regulation of functional foods for weight management
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Satiety-enhancing products for appetite control: science and regulation of functional foods for weight management
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Satiety-enhancing products for appetite control: science and regulation of functional foods for weight management
      Available formats
      ×

Copyright

Corresponding author

Corresponding author: Professor Jason C. G. Halford, fax +44 151 7942945, email j.c.g.halford@liverpool.ac.uk

Footnotes

Hide All
*

This symposium was industrially sponsored and was supplementary to the Nutrition Society Summer meeting.

This review is not a European Food Safety Authority (EFSA) endorsed or sponsored document. It contains the authors’ comments, which are based entirely on published EFSA guidance and opinions in the context of published scientific literature. Published EFSA guidance is only available in draft form at the time of writing.

Footnotes

References

Hide All
3.Hill, JO (2006) Understanding and addressing the epidemic of obesity: an energy balance perspective. Endocr Rev 27, 750761.
4.Halford, JCG, Boyland, EJ, Blundell, JE et al. (2010) Pharmacological management of appetite expression in obesity. Nat Rev Endocrinol 6, 255269.
5.Williamson, DA, Lawson, OJ, Brooks, ER et al. (1995) Association of body mass with dietary restraint and disinhibition. Appetite 25, 3141.
6.Dykes, J, Brunner, EJ, Martikeainene, PT et al. (2000) Socioeconomic gradient in body size and obesity among women: the role of dietary restraint, disinhibition and hunger in the Whitehall II study. Int. J. Obesity 28, 262268.
7.Hays, NP, Bathaloon, GP, McCrory, MA et al. (2002) Eating behaviour correlates of adult weight gain and obesity in healthy women aged 55–65 y. Am J Clin Nutr 75, 476483.
8.Bellisle, F, Clément, K, Le Barzic, M et al. (2004) Eating inventory and body adiposity from leanness to massive obesity: a study of 2509 adults. Obes Res 12, 20232030.
9.Wardle, J, Carnell, S, Haworth, CM et al. (2008) Obesity associated genetic variation in FTO is associated with diminished satiety. J Clin Endocrinol Metab 93, 36403643.
10.Llewellyn, CH, van Jaarsveld, CH, Boniface, D et al. (2008) Eating rate is a heritable phenotype related to weight in children. Am J Clin Nutr 88, 15601566.
11.Blundell, JE, Levin, G, King, NA et al. (2008) Over-consumption and obesity: peptides and susceptibility to weight gain. Regul Pept 149, 3238.
12.Finlayson, G, King, N & Blundell, JE (2007) Liking vs. wanting food: importance for human appetite control and weight regulation. Neurosci Biobehav Rev 31, 987–1002.
13.Mela, DJ (2006) Eating for pleasure or just wanting to eat? Reconsidering sensory hedonic responses as a driver of obesity. Appetite 47, 1017.
14.Bryant, EJ, King, NA & Blundell, JE (2008) Disinhibition: its effects on appetite and weight regulation. Obes Rev 9, 409419.
15.Das, SK, Saltzman, E, Gilhooly, CH et al. (2009) Low or moderate dietary energy restriction for long-term weight loss: what works best? Obesity 17, 20192024.
16.Marketdata Enterprises (2010) The U.S. Weight Loss & Diet Control Market, 10th ed. Tampa, FL, USA: Marketdata Enterprises.
17.Market Research.com (2009) Global Weight Loss and Diet Management (2009–2014). Pub ID: MKMK2382487.
18.Regulation (EC) No. 1924/2006 of the European Parliament and of the Council of the 20th of December 2006 on Nutrition and Health Claims Made on Foods.
19.EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) DRAFT SCIENTIFIC OPINION 1. Guidance on the scientific requirements for health claims related to appetite ratings, weight management, and blood glucose concentrations. EFSA Journal 20. Available at: http://www.efsa.europa.eu/en/consultations/call/nda110426.pdf (accessed 20 February 2012).
20.Blundell, JE, de Graaf, C, Hulshof, T et al. (2010) Appetite Control: methodological aspects of the evaluation of foods. Obes Rev 11, 251270.
21.Blundell, JE, Goodson, S & Halford, JCG (2001) Regulation of appetite: role of leptin in signalling systems for drive and satiety. Int J Obes 25, s29s34.
22.Crawley, JN & Corwin, RL (1994) Biological actions of cholecystokinin. Peptides 15, 731755.
23.Moran, TH (2000) Cholecystokinin and satiety: current perspectives. Nutrition 16, 585865.
24.Halford, JCG, Cooper, GD & Dovey, TM (2004) The pharmacology of human appetite expression. Curr Drug Targets 5, 221240.
25.Holst, JJ (2007) The physiology of glucagon-like peptide-1. Physiol Rev 87, 14091439.
26.Verdich, C, Flint, A, Gutzwiller, JP et al. (2001) A meta-analysis of the effect of glucagon-like peptide 1 (7–36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab 86, 43824389.
27.Small, CJ & Bloom, ST (2004) Gut hormones and the control of appetite. Trends Endocrinol Metab 15, 259263.
28.Batterham, RL, Cowley, MA, Small, CJ et al. (2002) Gut hormone PYY3-36 physiologically inhibits food intake. Nature 418, 650654.
29.Wanders, AJ, van den Born, JJGC, de Graaf, C et al. (2011) Effect of dietary fibre on subjective appetite, energy intake and body weight: a systematic review of randomised controlled trials. Obes Rev 12, 724739.
30.Hetherington, MM, Cunningham, K, Dye, L et al. (2012) Benefits of satiety to the consumer: scientific consideration. Obes Rev (In the Press).
31.Womble, LG, Williamson, DA, Greenway, FL et al. (2001) Psychological and behavioral predictors of weight loss during drug treatment for obesity. Int J Obes 25, 340345.
32.Elfhag, K & Rössner, S (2005) Who succeeds in maintaining weight loss? A conceptual review of factors associated with weight loss maintenance and weight regain. Obes Rev 6, 6785.
33.Lejeune, MP, Hukshorn, CJ, Saris, WH et al. (2007) Effects of very low calorie diet induced body weight loss with or without human pegylated recombinant leptin treatment on changes in ghrelin and adiponectin concentrations. Physiol Behav. 91, 274280.
34.Sumithran, P, Prendergast, LA, Delbridge, E et al. (2011) Long-term persistence of hormonal adaptations to weight loss. N Engl J Med 365, 15971604.
35.Epstein, LH, Truesdale, R, Wojcik, A et al. (2003) Effects of deprivation on hedonics and reinforcing value of food. Physiol Behav 78, 221227.
36.Goldstone, AP, dr Hernamdez, CGP, Bell, JD et al. (2009) Fasting biases brain reward systems towards high-calorie foods. Eur J Neurosci 30, 16251635.
37.Keys, A, Brozek, J, Henschel, A et al. (1950) The Biology of Human Starvation (2 Volumes). Minneapolis, MN: University of Minnesota Press.
38.Warren, C & Cooper, PJ (1980) Psychological effects of dieting. Br J Clin Psychol 27, 269270.
39.Polivy, J (1996) Psychological consequences of food restriction. J Am Diet Assoc 96, 589592.
40.Williams, JM, Healy, H, Eade, J et al. (2002) Mood, eating behaviour and attention. Psychol Med 32, 469481.
41.Vreugdenburg, L, Bryan, J & Kemps, E (2003) The effect of self-initiated weight-loss dieting on working memory: the role of preoccupying cognitions. Appetite 41, 291300.
42.Kemps, E, Tiggemann, M & Grigg, M (2008) Food cravings consume limited cognitive resources. J Exp Psychol Appl 14, 247254.
43.Timmerman, GM & Gregg, EK (2003) Dieting, perceived deprivation, and preoccupation with food. West J Nurs Res 25, 405418.
44.Stockburger, J, Schmälzle, R, Flaisch, T et al. (2009) The impact of hunger on food cue processing: an event-related brain potential study. Neuroimage 47, 18191829.
45.Blundell, JE, de Graaf, C, Finlayson, G et al. (2009) The measuring food intake, hunger and satiation in the laboratory. In Handbook of Assessment Methods for Obesity and Eating Behaviours, 2nd ed., pp. 283326 [Allison, DB & Baskin, ML, editors]. Thousand Oaks, CA: Sage Publications.
46.Hill, AJ, Rogers, PJ & Blundell, JE (1995) Techniques for the experimental measurement of human eating behaviour and food intake: a practical guide. Int J Obes 19, 361375.
47.Rogers, PJ & Blundell, JE (1979) Effect of anorexic drugs on food intake and the micro-structure of eating in human subjects. Psychopharmacology 66, 159165.
48.Mars, M, Statfleu, A & de Graff, C (2012) Use of satiety peptides in assessing the satiating capacity of foods. Physiol Behav 105, 483486.
49.Halton, TL & Hu, FB (2004) The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. J Am Coll Nutr 23, 373385.
50.Paddon-Jones, D, Westman, E, Mattes, RD et al. (2008) Protein, weight management and satiety. Am J Clin Nutr 87, 1558s1561s.
51.Gerstein, DE, Woodward-Lopez, G, Evans, AE et al. (2004) Clarifying concepts about macronutrients’ effects on satiation and satiety. J Am Diet Assoc 104, 11511153.
52.Weigle, DS, Breen, PA, Matthys, CC et al. (2005) A high-protein diet induces sustain reductions in appetite, ad libitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations. Am J Clin Nutr 82, 4148.
53.EFSA Panel of Dietetic Production, Nutrition and Allergies (2010) Scientific opinion on the substantiation of health claims related to protein and increase in satiety leading to a reduction in energy intake (ID 414, 616, 730), contribution to the maintenance or achievement of a normal body weight (ID 414, 616, 730), maintenance of normal bone (ID 416) and growth or maintenance of muscle mass (ID 415, 417, 593, 594, 595, 715) pursuant to Article 13(1) of Regulation (EC) No. 1924/2006. EFSA J 8, 1811.
54.EFSA Panel of Dietetic Production, Nutrition and Allergies (2010) Scientific opinion on the substantiation of health claims related to soy protein and contribution to the maintenance or achievement of a normal body weight (ID 598), maintenance of normal blood cholesterol concentrations (ID 556) and protection of DNA, proteins and lipids from oxidative damage (ID 435) pursuant to Article 13(1) of Regulation (EC) No. 1924/2006. EFSA J 8, 1812.
55.EFSA Panel of Dietetic Production, Nutrition and Allergies (2010) Scientific opinion on the substantiation of health claims related to whey protein and increase in satiety leading to a reduction in energy intake (ID 425), contribution to the maintenance or achievement of a normal body weight (ID 1683), growth or maintenance of muscle mass (ID 418, 419, 423, 426, 427, 429, 4307), increase in lean body mass during energy restriction and resistance training (ID 421), reduction of body fat mass during energy restriction and resistance training (ID 420, 421), increase in muscle strength (ID 422, 429), increase in endurance capacity during the subsequent exercise bout after strenuous exercise (ID 428), skeletal muscle tissue repair (ID 428) and faster recovery from muscle fatigue after exercise (ID 423, 428, 431), pursuant to Article 13(1) of Regulation (EC) No. 1924/2006. EFSA J 8, 1818.
56.Baer, DJ, Stote, KS, Paul, DR et al. (2011) Whey protein but not soy protein supplementation alters body weight and composition in free-living overweight and obese adults. J Nutr 141, 14891494.
57.EFSA Panel of Dietetic Production, Nutrition and Allergies (2011) Scientific Opinion on the substantiation of health claims related to mycoprotein and maintenance of normal blood LDL-cholesterol concentrations (ID 1619) and increase in satiety leading to a reduction in energy intake (ID 1620) pursuant to Article 13(1) of Regulation (EC) No. 1924/2006. EFSA J 9, 2042.
58.EFSA Panel of Dietetic Production, Nutrition and Allergies (2010) Scientific opinion on the substantiation of health claims related to dietary fibre (ID 744, 745, 746, 748, 749, 753, 803, 810, 855, 1415, 1416, 4308, 4330) pursuant to Article 13(1) of Regulation (EC) No. 1924/2006. EFSA J 8, 1735.
59.EFSA Panel of Dietetic Production, Nutrition and Allergies (2011) Scientific Opinion on the substantiation of health claims related to beta-glucans from oats and barley and maintenance of normal blood LDL-cholesterol concentrations (ID 1236, 1299), increase in satiety leading to a reduction in energy intake (ID 851, 852), reduction of post-prandial glycaemic responses (ID 821, 824), and ‘digestive function’ (ID 850) pursuant to Article 13(1) of Regulation (EC) No. 1924/2006. EFSA J 9, 2207.
60.EFSA Panel of Dietetic Production, Nutrition and Allergies (2011) Scientific opinion on the substantiation of health claims related to: a combination of millet seed extract, L-cystine and pantothenic acid (ID 1514), amino acids (ID 1711), carbohydrate and protein combination (ID 461), Ribes nigrum L. (ID 2191), Vitis vinifera L. (ID 2157), Grifola frondosa (ID 2556), juice concentrate from berries of Vaccinium macrocarpon Aiton and Vaccinium vitis-idaea L. (ID 1125, 1288), blueberry juice drink and blueberry extracts (ID 1370, 2638), a combination of anthocyanins from bilberry and blackcurrant (ID 2796), inulin-type fructans (ID 766, 767, 768, 769, 770, 771, 772, 804, 848, 849, 2922, 3092), green clay (ID 347, 1952), foods and beverages ‘low in energy’, ‘energy-free’ and ‘energy-reduced’ (ID 1146, 1147), and carbohydrate foods and beverages (ID 458, 459, 470, 471, 654, 1277, 1278, 1279) pursuant to Article 13(1) of Regulation (EC) No. 1924/2006. EFSA J 9, 2244.
61.EFSA Panel of Dietetic Production, Nutrition and Allergies (2010) Scientific opinion on the substantiation of health claims related to xanthan gum and increased satiety (ID 838) pursuant to Article 13(1) of Regulation (EC) No. 1924/2006 EFSA J 8, 1481.
62.EFSA Panel of Dietetic Production, Nutrition and Allergies (2010) Scientific opinion on the substantiation of health claims related to guar gum and maintenance of normal blood glucose concentrations (ID 794), increase in satiety (ID 795) and maintenance of normal blood cholesterol concentrations (ID 808) pursuant to Article 13(1) of Regulation (EC) No. 1924/2006. EFSA J 8, 1464.
63.EFSA Panel of Dietetic Production, Nutrition and Allergies (2010) Scientific opinion on the substantiation of health claims related to partially hydrolysed guar gum and increase in satiety (ID 790), maintenance or achievement of a normal body weight (ID 790), maintenance of normal blood concentrations of triglycerides (ID 793, 816), maintenance of normal blood cholesterol concentrations (ID 793, 816), reduction of post-prandial glycaemic responses (ID 789, 2932) and maintenance of normal blood glucose concentrations (ID 792) pursuant to Article 13(1) of Regulation (EC) No. 1924/2006. EFSA J 8, 1465.
64.Lluch, A, Hanet-Geisen, N, Salah, S et al. (2010) Short-term appetite reducing effects of a low-fat dairy product enriched with protein and fibre. Food Qual Prefer 21, 402409.
65.EFSA Panel of Dietetic Production, Nutrition and Allergies (2008) Scientific substantiation of a health claim related to a milk product, rich in fibre and protein, and reduction of the sense of hunger pursuant to Article 13(5) of Regulation (EC) No. 1924/2006. EFSA J 894, 19.
66.Halford, JCG (2007) What's new in the appetite suppressant field? A nutritional and behavioural perspective. Agro-Food Ind Hi-Tech 18, 2830.
67.Burns, AA, Livingstone, MBE, Welch, RW et al. (2002) Dose-response effects of a novel fat emulsion (OlibraTM) on energy and macronutrient intakes up to 36 h post consumption. Eur J Clin Nutr 56, 368377.
68.Haenii, A, Sundberg, B, Yazdanpanah, N et al. (2009) Effect of fat emulsion (Fabuless) on orocecal transit time in healthy men. Scand J Gastroenterol 44, 11861190.
69.Logan, CM, McCaffrey, TA, Wallace, JMV et al. (2006) Investigation of the medium-term effects of OlibraTM fat emulsion on food intake in non-obese subjects. Eur J Clin Nutr 60, 10811091.
70.Smit, HJ, Keenan, E, Kovacs, EMR et al. (2011) No efficacy of processed Fabuless (Olibra) in suppressing appetite or food intake. Eur J Clin Nutr 65, 8186.
71.EFSA Panel of Dietetic Production, Nutrition and Allergies (2011) Scientific opinion on the substantiation of health claims related to formulated palm and oat oil emulsion and contribution to the maintenance or achievement of a normal body weight (ID 577) and maintenance of body weight after weight loss (ID 1553) pursuant to Article 13(1) of Regulation (EC) No. 1924/2006. EFSA J 9, 2252.
72.Olsson, J, Sundberg, B, Vibert, A et al. (2011) Effect of a vegetable-oil emulsion on body composition; a 12 week study in overweight women on a meal replacement therapy after an initial weight loss: a randomised controlled trial. Eur J Nutr 50, 235242.
73.EFSA Panel of Dietetic Production, Nutrition and Allergies (2011) Scientific opinion on the substantiation of a health claim related to ‘pine nut oil from Pinus koraiensis Siebold & Zucc’ and an increase in satiety leading to a reduction in energy intake (ID 551) pursuant to Article 13(1) of Regulation (EC) No. 1924/2006. EFSA J 9, 2207.
74.Hughes, GM, Boyland, EJ, Williams, NJ et al. (2008) A double-blind placebo-controlled experimental study to investigate the impact of Korean pine nut oil on food intake, feeding behaviour and appetite. Lipids in Health and Disease 7. Available at: http://www.lipidworld.com/content/pdf/1476-511X-7-6.pdf (accessed 20 February 2012).
75.Parnell, JA & Reimer, RA (2009) Weight loss during oligofructose supplementation is associated with decreases ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr 89, 17511759.
76.Peters, HPF, Boers, HM, Haddeman, E et al. (2009) No effect of added beta-glucan or of fructooligosaccharide on appetite or energy intake. Am J Clin Nutr 89, 5863.
77.Darzi, J, Frost, GS & Robertson, MD (2011) Postgraduate symposium: do SCFA have a role in appetite regulation. Proc Nutr Soc 70, 119128.
78.Bodinham, CL, Frost, GS & Robertson, MD (2010) Acute ingestion of resistant starch reduces food intake in healthy adults. Br J Nutr 103, 917922.
79.Anderson, GH, Cho, CE, Akhavan, T et al. (2010) Relation between estimated of cornstarch digestibility by the englyst in vitro method and glycaemic response, subjective appetite, and short-term food intake in young men. Am J Clin Nutr 91, 932939.
80.Booth, DA & Nouwen, A (2010) Satiety: no way to slim. Appetite 55, 718721.
81.Bellisle, F & Trembley, A (2011) Satiety and body weight control. Promise and compromise. Comment on ‘Satiety. No way to slim’. Appetite 57, 769771.
82.Smeets, PAM & Van der Laan, LN (2011) Satiety. Not the problem, nor a solution. Comment on ‘Satiety. No way to slim’. Appetite 57, 772773.
83.Mela, DJ (2011) Satiety. Let's put claims in the right context. Comment on ‘Satiety. No way to slim’. Appetite 57, 774777.
84.De Graaf, C (2011) Trustworthy satiety claims are goof for science and society. Comment on ‘Satiety. No way to slim’. Appetite 57, 778782.
85.Booth, DA & Nouwen, A (2011) Weight is controlled by eating patterns, not foods or drugs: reply to comments on ‘Satiety. No way to slime’. Appetite 57, 784790.
86.EFSA Panel of Dietetic Production, Nutrition and Allergies (2010) Scientific opinion on the substantiation of health claims related to meal replacements for weight control (as defined in Directive 96/8/EC on energy restricted diets for weight loss) and reduction in body weight (ID 1417), and maintenance of body weight after weight loss (ID 1418) pursuant to Article 13(1) of Regulation (EC) No. 1924/2006. EFSA J 8, 1466.
87.EFSA Panel of Dietetic Production, Nutrition and Allergies (2011) Scientific opinion on the substantiation of health claims related to very low calorie diets (VLCDs) and reduction in body weight (ID 1410), reduction in the sense of hunger (ID 1411), reduction in body fat mass while maintaining lean body mass (ID 1412), reduction of post-prandial glycaemic responses (ID 1414), and maintenance of normal blood lipid profile (1421) pursuant to Article 13(1) of Regulation (EC) No. 1924/2006. EFSA J 9, 2271.

Keywords

Satiety-enhancing products for appetite control: science and regulation of functional foods for weight management

  • Jason C. G. Halford (a1) and Joanne A. Harrold (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed