Skip to main content Accessibility help
×
Home

Relationship between nutritional status and the systemic inflammatory response: micronutrients

  • Donald C. McMillan (a1), Donogh Maguire (a2) and Dinesh Talwar (a3)

Abstract

Micronutrients such as trace elements and vitamins are important as enzyme cofactors in the metabolism of all cells in the body and therefore key to determining nutritional status. The present systematic review examined the evidence of the impact of the systemic inflammatory response on plasma micronutrient status in acute (surgical) and chronic tissue injury. A literature review using targeted subject headings was carried out. Plasma C-reactive protein was used to classify minor (<10 mg/l), moderate (11–80 mg/l) and major (>80 mg/l) inflammation. The literature search produced 2344 publications and plasma vitamin D, zinc and carotenoids were most commonly studied and plasma vitamins K, B2 and B6 were least studied. In acute injury thirteen studies (all prospective) and in chronic injury twenty-four studies (largely retrospective) were included in the review. There was consistent evidence that most common measured micronutrients in the plasma (zinc, selenium, vitamins A, D, E, K, B2, B6, B12, C, lutein, lycopene, α- and β-carotene) were significantly lowered from minor to moderate to major inflammation. The results of the present systematic review indicate that most plasma micronutrients fall as part of the systemic inflammatory response irrespective of acute or chronic injury. Therefore, in the presence of a systemic inflammation, plasma micronutrient concentrations should be interpreted with caution. There are a number of methods applied to adjust plasma micronutrient concentrations to avoid misdiagnosis of deficiency. Alternatively, intracellular measurements appear to obviate the need for such plasma adjustment to assess micronutrient status.

Copyright

Corresponding author

*Corresponding author: Donald C. McMillan, fax 0141 211 4943, email Donald.McMillan@glasgow.ac.uk

References

Hide All
1.Gabay, C & Kushner, I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340, 448454.
2.Hotamisligil, GS (2017) Foundations of immunometabolism and implications for metabolic health and disease. Immunity 47, 406420.
3.Watt, DG, Horgan, PG & McMillan, DC (2015) Routine clinical markers of the magnitude of the systemic inflammatory response after elective operation: a systematic review. Surgery 157, 362380.
4.Galloway, P, McMillan, DC & Sattar, N (2000) Effect of the inflammatory response on trace element and vitamin status. Ann Clin Biochem 37, 289297.
5.Fraser, WD, Taggart, DP, Fell, GS et al. (1989) Changes in iron, zinc, and copper concentrations in serum and in their binding to transport proteins after cholecystectomy and cardiac surgery. Clin Chem 35, 22432247.
6.Moore, CM, Desborough, JP, Powell, H et al. (1994) Effects of extradural anaesthesia on interleukin-6 and acute phase response to surgery. Br J Anaesth 72, 272279.
7.Nichol, C, Herdman, J, Sattar, N et al. (1998) Changes in the concentrations of plasma selenium and selenoproteins after minor elective surgery: further evidence for a negative acute phase response? Clin Chem 44, 17641766.
8.Oakes, EJ, Lyon, TD, Duncan, A et al. (2008) Acute inflammatory response does not affect erythrocyte concentrations of copper, zinc and selenium. Clin Nutr 27, 115120.
9.Braga, M, Bissolati, M, Rocchetti, S et al. (2012) Oral preoperative antioxidants in pancreatic surgery: a double-blind, randomized, clinical trial. Nutrition 28, 160164.
10.Louw, JA, Werbeck, A, Louw, ME et al. (1992) Blood vitamin concentrations during the acute-phase response. Crit Care Med 20, 934941.
11.Gray, A, McMillan, DC, Wilson, C et al. (2005) The relationship between the acute changes in the systemic inflammatory response, lipid soluble antioxidant vitamins and lipid peroxidation following elective knee arthroplasty. Clin Nutr 24, 746750.
12.Reid, D, Toole, BJ, Knox, S et al. (2011) The relation between acute changes in the systemic inflammatory response and plasma 25-hydroxyvitamin D concentrations after elective knee arthroplasty. Am J Clin Nutr 93, 10061011.
13.Waldron, JL, Ashby, HL, Cornes, MP et al. (2013) Vitamin D: a negative acute phase reactant. J Clin Pathol 66, 620622.
14.Barker, T, Leonard, SW, Trawick, RH et al. (2009) Modulation of inflammation by vitamin E and C supplementation prior to anterior cruciate ligament surgery. Free Radic Biol Med 46, 599606.
15.Azharuddin, MK, O'Reilly, DS, Gray, A et al. (2007) HPLC method for plasma vitamin K1: effect of plasma triglyceride and acute-phase response on circulating concentrations. Clin Chem 53, 17061713.
16.Gray, A, McMillan, DC, Wilson, C et al. (2004) The relationship between plasma and red cell concentrations of vitamins thiamine diphosphate, flavin adenine dinucleotide and pyridoxal 5-phosphate following elective knee arthroplasty. Clin Nutr 23, 10801083.
17.Conway, FJ, Talwar, D & McMillan, DC (2015) The relationship between acute changes in the systemic inflammatory response and plasma ascorbic acid, alpha-tocopherol and lipid peroxidation after elective hip arthroplasty. Clin Nutr 34, 642646.
18.McMillan, DC, Sattar, N, Talwar, D et al. (2000) Changes in micronutrient concentrations following anti-inflammatory treatment in patients with gastrointestinal cancer. Nutrition 16, 425428.
19.Cander, B, Dundar, ZD, Gul, M et al. (2011) Prognostic value of serum zinc levels in critically ill patients. J Crit Care 26, 4246.
20.Duncan, A, Talwar, D, McMillan, DC et al. (2012) Quantitative data on the magnitude of the systemic inflammatory response and its effect on micronutrient status based on plasma measurements. Am J Clin Nutr 95, 6471.
21.Vinha, PP, Martinez, EZ, Vannucchi, H et al. (2013) Effect of acute thermal injury in status of serum vitamins, inflammatory markers, and oxidative stress markers: preliminary data. J Burn Care Res 34, e87e91.
22.Stefanowicz, F, Gashut, RA, Talwar, D et al. (2014) Assessment of plasma and red cell trace element concentrations, disease severity, and outcome in patients with critical illness. J Crit Care 29, 214218.
23.Ghashut, RA, McMillan, DC, Kinsella, J et al. (2016) The effect of the systemic inflammatory response on plasma zinc and selenium adjusted for albumin. Clin Nutr 35, 381387.
24.Uddin, MG, Hossain, MS, Rahman, MA et al. (2017) Elemental zinc is inversely associated with C-reactive protein and oxidative stress in chronic liver disease. Biol Trace Elem Res 178, 189193.
25.Cirino Ruocco, MA, Pacheco Cechinatti, ED, Barbosa, F et al. (2018) Zinc and selenium status in critically ill patients according to severity stratification. Nutrition 45, 8589.
26.Tenforde, MW, Yadav, A, Dowdy, DW et al. (2017) Vitamin A and D deficiencies associated with incident tuberculosis in HIV-infected patients initiating antiretroviral therapy in multinational case-cohort study. J Acquir Immune Defic Syndr 75, e71e79.
27.Bui, VQ, Stein, AD, DiGirolamo, AM et al. (2012) Associations between serum C-reactive protein and serum zinc, ferritin, and copper in Guatemalan school children. Biol Trace Elem Res 148, 154160.
28.Ghashut, RA, Talwar, D, Kinsella, J et al. (2014) The effect of the systemic inflammatory response on plasma vitamin 25 (OH) D concentrations adjusted for albumin. PLoS One 9, e92614.
29.Nogueira, CR, Borges, F, Lameu, E et al. (2013) Effects of supplementation of antioxidant vitamins and lipid peroxidation in critically ill patients. Nutr Hosp 28, 16661672.
30.Quasim, T, McMillan, D, Talwar, D et al. (2005) The relationship between plasma and red cell B-vitamin concentrations in critically-ill patients. Clin Nutr 24, 956960.
31.Leung, EY, Roxburgh, CS, Talwar, D et al. (2012) The relationships between plasma and red cell vitamin B2 and B6 concentrations and the systemic and local inflammatory responses in patients with colorectal cancer. Nutr Cancer 64, 515520.
32.Nix, WA, Zirwes, R, Bangert, V et al. (2015) Vitamin B status in patients with type 2 diabetes mellitus with and without incipient nephropathy. Diabetes Res Clin Pract 107, 157165.
33.Le Marchand, L, White, KK, Nomura, AM et al. (2009) Plasma levels of B vitamins and colorectal cancer risk: the multiethnic cohort study. Cancer Epidemiol Biomarkers Prev 18, 21952201.
34.Vayá, A, Rivera, L, Hernández-Mijares, A et al. (2012) Homocysteine levels in morbidly obese patients: its association with waist circumference and insulin resistance. Clin Hemorheol Microcirc 52, 4956.
35.Mahalle, N, Kulkarni, MV, Garg, MK et al. (2013) Vitamin B12 deficiency and hyperhomocysteinemia as correlates of cardiovascular risk factors in Indian subjects with coronary artery disease. J Cardiol 61, 289294.
36.Ghashut, RA, McMillan, DC, Kinsella, J et al. (2017) Erythrocyte concentrations of B1, B2, B6 but not plasma C and E are reliable indicators of nutrition status in the presence of systemic inflammation. Clin Nutr ESPEN 17, 5462.
37.Suzuki, K, Ito, Y, Ochiai, J et al. (2003) Relationship between obesity and serum markers of oxidative stress and inflammation in Japanese. Asian Pac J Cancer Prev 4, 259266.
38.Leung, EY, Crozier, JE, Talwar, D et al. (2008) Vitamin antioxidants, lipid peroxidation, tumour stage, the systemic inflammatory response and survival in patients with colorectal cancer. Int J Cancer 123, 24602464.
39.Ghashut, RA, McMillan, DC, Kinsella, J et al. (2013) Quantitative data on the magnitude of the systemic inflammatory response and its effect on carotenoids status based on plasma measurements. ESPEN J 8, e193e199.
40.Wang, L, Gaziano, JM, Norkus, EP et al. (2008) Associations of plasma carotenoids with risk factors and biomarkers related to cardiovascular disease in middle-aged and older women. Am J Clin Nutr 88, 747754.
41.Gajendragadkar, PR, Hubsch, A, Mäki-Petäjä, KM et al. (2014) Effects of oral lycopene supplementation on vascular function in patients with cardiovascular disease and healthy volunteers: a randomised controlled trial. PLoS One 9, e99070.
42.Vasilaki, AT, Leivaditi, D, Talwar, D et al. (2009) Assessment of vitamin E status in patients with systemic inflammatory response syndrome: plasma, plasma corrected for lipids or red blood cell measurements? Clin Chim Acta 409, 4145.
43.Thurnham, DI (2015) Inflammation and Vitamin A. Food Nutr Bull 36, 290298.
44.Thurnham, DI & Northrop-Clewes, CA (2016) Inflammation and biomarkers of micronutrient status. Curr Opin Clin Nutr Metab Care 19, 458463.
45.MacDonell, SO, Miller, JC, Harper, MJ et al. (2018) A comparison of methods for adjusting biomarkers of iron, zinc, and selenium status for the effect of inflammation in an older population: a case for interleukin 6. Am J Clin Nutr 107, 932940.
46.Namaste, SM, Aaron, GJ, Varadhan, R et al. ; BRINDA Working Group (2017) Methodologic approach for the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am J Clin Nutr 106(Suppl 1), 333S-347S.
47.McSorley, ST, Talwar, D & McMillan, DC. (2018) Comment on the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am J Clin Nutr 108, 204205.
48.Meyer, HE, Holvik, K & Lips, P (2015) Should vitamin D supplements be recommended to prevent chronic diseases? Br Med J 350, h321.
49.Raiten, DJ, Sakr Ashour, FA, Ross, AC et al. (2015) INSPIRE Consultative Group. Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE). J Nutr 145, 1039S1108S.

Keywords

Relationship between nutritional status and the systemic inflammatory response: micronutrients

  • Donald C. McMillan (a1), Donogh Maguire (a2) and Dinesh Talwar (a3)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed