Skip to main content Accessibility help
×
Home

Information:

  • Access
  • Cited by 9

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Longitudinal follow-up of the relationship between dietary intake and growth and development in the Lifeways cross-generation cohort study 2001–2013
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        Longitudinal follow-up of the relationship between dietary intake and growth and development in the Lifeways cross-generation cohort study 2001–2013
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        Longitudinal follow-up of the relationship between dietary intake and growth and development in the Lifeways cross-generation cohort study 2001–2013
        Available formats
        ×
Export citation

Abstract

In this paper we will review evidence on the early life and familial influences on childhood growth and development, with particular reference to the Lifeways cross-generation cohort study in the Republic of Ireland. The Lifeways cross-generation cohort study was established in 2001–2013 through two maternity hospitals in the Republic of Ireland and was one of many new cohort studies established worldwide in the millennium period. Mothers were recruited at first booking visit, completing a self-administered questionnaire, which included a 147 item semi-quantitative FFQ. Longitudinal follow-up is ongoing in 2013, with linkage data to hospital and general practice records and examination of children when aged 5 and 9 years. The study is one of very few containing data on grandparents of both lineages with at least one grandparent recruited at baseline. There have been consistent associations between parental and grandparental health status characteristics and children's outcomes, including infant birth-weight, BMI when child was aged 5 years and childhood wheeze or asthma when child was aged 3 and aged 5 years. In conclusion, empirical evidence to date shows consistent familial and cross-generational patterns, particularly in the maternal line.

As the global obesity epidemic continues to pose a major public health challenge, it has become increasingly important to understand how risk for adult chronic disease is transmitted across generations and through the life course of individuals( 1 11 ). In the present paper, we will review briefly recent evidence, with particular reference to the Lifeways cross-generation cohort study in the Republic of Ireland. This linkage cohort study was one of several established globally in the millennium period( 12 ) and has followed index children since recruitment during pregnancy in 2001–2013 and also their mothers, fathers and at least one grandparent. The design and data management considerations have been described previously and the original mothers were found to be comparable in demographic terms with women of the same age in the contemporary Survey of Lifestyles, Attitudes and Nutrition (SLAN)( 13 , 14 ). The study objectives were to document health status, diet and lifestyle in the family members and to establish patterns and links across generations. The study continues to follow participants up to 2013 and the data collected in each sweep are summarised in Table 1.

Table 1. Summary of data collection sweeps to date in the Lifeways cross-generation cohort study

MGM, maternal grandmother; MGF, maternal grandfather; PGM, paternal grandmother; PGF, paternal grandfather; GP, general practice.

In the initial 5 years follow-up, primary care utilisation patterns were documented and the study examined how indicators of social position, particularly means-tested eligibility to free healthcare, influenced health status of family members. In the Republic of Ireland, there is a two-tiered means-tested health care system, and access to free primary and community care including general practice is available to those below a certain income level, so-called general medical services (GMS) eligibility. This has been found to be a robust indicator of both social disadvantage and various health outcomes( 15 ).

A life-course approach to diet, growth and development

In social epidemiology, a comprehensive account of influences across the life course must be undertaken in order to understand why outcomes such as CVD, cancers or diabetes might develop in adulthood( 16 ). Such an approach takes account of the immediate proximal pathophysiological processes leading to a specific disease outcome, and more recently how genetic, genomic or nutrigenomic factors acting at different time points might be affecting the outcome in question, which we discuss later ( 4 , 17 24 ). However, there are also contextual factors to be considered, such as individual lifestyle choices or health behaviours predisposing to risk factor development, and in turn how so-called meso-level situations such as the work environment, occupation or social class determine those health choices at different life stages, all of these being underpinned by the wider sociopolitical structure( 16 ). This level of understanding is required if changes are to be wrought by public policy strategies. Study designs to take account of these factors may be longitudinal but also have design challenges to record what is measurable at the level of the individual cohort member and how best to record and examine ecological level factors such as a region or area, or group characteristics such as family membership.

The seminal influence of Barker( 1 , 3 , 5 , 6 ) in reframing our understanding of early life influences on adult chronic disease has created a paradigm shift in our understanding of these processes over the past three decades. In the original Hertfordshire retrospective cohort study, where current health outcomes were linked to original infant anthropometric records, Barker et al. showed the graduated inverse relationship between both birth-weight and weight in infancy and death for CHD at all ages in 10 636 men( 1 ). As they pointed out, there are various reasons for babies to be small at birth and in infancy, including low birth-weight, short stature, placental insufficiencies and failure to thrive( 3 ). Since then many studies have considered cumulative, trajectory and critical period influences on longer term outcomes. It is now well understood that there are two processes at the extremes of birth-weight, whereby larger babies are at greater risk of subsequent diabetes and obesity, in turn related to maternal weight and height( 8 , 25 ) and lower birth-weight babies subjected to degrees of intrauterine growth retardation are also susceptible to later adult chronic disease( 1 , 5 , 7 , 10 ). The developmental plasticity hypothesis, whereby there is a critical period during which a system is plastic, followed by loss of plasticity and a fixed functional capacity, is now well accepted as a biological phenomenon, and pregnancy, during which the intrauterine development of all children occurs, is one such critical period shared by all individuals( 5 , 10 , 11 ).

Barker has since extended this concept to define what he calls 100 years of nutritional flow( 6 ). The 1000 d from conception to toddlerhood not only include maternal influences such as her nutritional supply to the fetus during pregnancy and early childhood feeding practices, but also the quality, size and shape of the placenta are increasingly understood to play a role in successful fetal and early childhood growth and development milestones and subsequent long-term health outcomes. The maternal grandmother is especially influential as it is she who makes the grandchild's egg for subsequent fertilisation by the ovulating mother. In this sense, the developmental investment in the index child dates across generations and an ageing adult owes his health status to his own constitutional and environmental exposures but also to that of his parents and grandparents. There is also the genetic influence of both parents and all grandparents, the X-linked effects of the mother, the Y-linked effects of the paternal line, and notably through the maternal line, the mitochondrial DNA transmission( 26 , 27 ). Recent studies have shown an association between variants in the ADCY5 gene and birth-weight and up to seven loci identified which account for a similar proportion of the variance in infant birth-weight as smoking( 19 ). This may predispose individuals both to relatively lower birth-weight and a propensity to adult chronic disease.

Cross-generational evidence

In recent years, a number of studies have been published showing the relationship between infant birth-weight and subsequent maternal and paternal morbidity and mortality( 28 31 ). Generally such an association has been shown for lower birth-weight, particularly for mothers. Many studies have attempted to examine how children's growth trajectories relate to their parents’ anthropometric characteristics( 9 , 11 ). Prospects for understanding the genetic, epigenetic or nutrigenomic mechanisms have recently been reviewed( 23 ). These authors define epigenetics as the regulatory processes that control the transcription of information encoded in the DNA sequence into RNA before their transcription into proteins. The tissue specificity of epigenetic patterns is a well-established phenomenon and not all studies report expected associations( 21 ), even though in principle nutrigenomic effects may be important as for instance DNA methylation which occurs in utero depends on the availability of several nutrients including methionine, vitamins B6, B12 and folate( 17 ).

A further use of genetic markers is in so-called Mendelian randomisation, whereby an individual receives at random a specific allele from its parent, this process being unlikely to be confounded by any subsequent behavioural characteristic of the individual. It is then possible to adjust for the known influence of this marker on an apparent prospective association between a risk factor and the disease-specific outcome of interest, using genotype as an instrumental variable. This has been shown for the FTO gene in Danish adults in relation to the association of obesity with IHD( 32 ) and to attenuate greatly the apparently strong association between maternal BMI and offspring adiposity( 33 ). These studies have attempted to address biased or confounded associations in that parents may share genetic or environmental characteristics, but not the direct health behaviours of their offspring( 34 ).

Several animal studies have provided evidence for transgenerational effects of intrauterine exposure( 18 , 22 , 35 , 36 ). Female rats, exposed to protein restriction during pregnancy and lactation, were found to have offspring that delivered a progeny with altered growth and metabolism( 35 ). A similar protein restriction trial in pregnant rats reported that second-generation offspring had raised blood pressure and endothelial dysfunction which was passed through the maternal line( 36 ). In contrast, Harrison and Langley-Evans( 18 ) reported that protein restriction during pregnancy results in a phenotype of raised blood pressure and reduced nephron number passed through maternal and paternal lines. More recently, Ponzio et al.( 22 ) have demonstrated that phenotypes resulting from maternal protein restriction are evident in a second and third generation of animals.

Studies of body composition and diet in human subjects have either been limited to one generation or have used proxy markers for diet intake across one or more generations, such as those of the Overkalix studies( 26 , 37 ) and the Dutch Winter Hunger study( 20 ). By contrast with parental data studies( 28 31 , 38 , 39 ) there are relatively fewer data on how grandparental characteristics affect their grandchildren's growth and development; all such studies have either been retrospective or data linkage in design and none to date had dietary intake data across generations. To date there are just four well-characterised human studies with three generations( 40 43 ). Manor and Koupil( 40 ) showed a U-shaped association between grandchild's birth-weight and circulatory disease mortality in maternal grandmothers only for infants born prior to 1977. There was a U-shaped association for maternal grandfathers’ overall and circulatory disease mortality and for paternal grandfathers there was an inverse association between grandchild's birth-weight and overall mortality. McCarron et al. ( 41 ) found that the grandchildren of maternal grandparents with reported type 2 diabetes were more likely to be in the top tertile of birth-weight. There was evidence for an inverted U-shaped association between birth-weight of grandchildren and diabetes in paternal grandmothers. Smith et al. ( 42 ) have shown an inverse relationship between maternal grandparents’ risk of IHD or cerebrovascular disease and infant birth-weight and did not have data on paternal lineages. In a very large linkage study in Norway, inverse relationships were shown according to both maternal and paternal lineages and cardiovascular outcomes in grandparents; adjusting for maternal smoking accounted for much of the effect on cardiovascular mortality. For grandparental diabetes mortality, U-shaped associations were seen with grandchild birth-weight for the maternal grandmother and inverse associations for all other grandparents( 43 ).

Prospective studies with information on diet and parental BMI

In an exploration of the literature, we attempted to identify cohort studies that included a measure of nutritional status (BMI or diet assessment) across two or three generations( 44 106 ). Prospective or cohort studies that include specifically information on maternal diet or BMI and that of other family members in relation to index children are summarised in Table 2. As Poston has pointed out, many of these are relatively recently established( 25 ). The studies vary in their objectives; several look at offspring size as the outcome of interest; others include diet and body size as factors associated with child and adult morbidities. Maternal pre or postnatal BMI is the variable most frequently reported (63 %) by these studies followed by paternal postnatal BMI (41 %; Table 2). Diet is less frequently reported with only one-third collecting information on prenatal maternal diet; prenatal paternal diet has only been collected by eight studies.

Table 2. Prospective studies with information on either diet or parental BMI, or both

* Prenatal BMI may be estimated before pregnancy or measured during pregnancy.

Cohorts of children born to mothers with gestational diabetes mellitus or previous macrosomia.

Cohorts currently recruiting or have recently completed recruitment.

The 1958 birth cohort has described the relationship between birth-weight of the grandchild and the influence of height by the grandparents( 57 ). Only one other study by Davis et al.( 51 ), has described a measure of BMI for grandparents. This study is limited, however, by the fact that grand maternal and grand paternal body composition was aggregated in the reported analysis. To our knowledge, no other studies have reported data available on either the BMI or diet of the proband child and their individual maternal and paternal grandparents. This makes the Lifeways cross-generation cohort study a highly unusual dataset in the literature, in that it contains information on health status, dietary intakes and adult chronic disease outcomes in the grandparental generation related to the health status of their grandchildren( 13 , 14 ).

Findings to date in the Lifeways study: pregnancy and early years

The Lifeways cross-generation cohort study was established in 2001–2013 through two maternity hospitals in the Republic of Ireland and was one of many new cohort studies established worldwide in the millennium period( 12 , 13 , 14 ). Mothers were recruited at first booking visit, completing a self-administered questionnaire which included a 147 item validated semi-quantitative FFQ. Longitudinal follow-up is ongoing in 2013, with linkage data to hospital and general practice records and examination of children when aged on average 5 and 9 years. The study is one of very few containing data on grandparents of both lineages, with at least one grandparent recruited at baseline. A summary of publications related to diet and cross-generation transmission to date for the Lifeways cohort study is given in Table 3 ( 107 121 ). These analyses in this cohort have been consistent in showing an influence on health outcomes at different time points of lifestyle factors including diet and of cross-generation and familial associations. This is arguably remarkable given that it is not a large cohort study, although characterised in some detail and with linkage to health records.

Table 3. Cross-generational or longitudinal Influences on health outcomes in the Lifeways cohort study 2001–2013

GMS, General medical services.

We have previously shown a social gradient in relation to baseline dietary intake at recruitment for all adult family members, in that those eligible for GMS had lower intakes of vitamin C and higher total fat intakes, having adjusted for other risk factors( 110 ). Both age and cohort group were important factors, as might be expected, since the parental and grandparental dietary patterns might be likely to differ and sex differences are also apparent, with higher mean energy intakes in males compared with females. Social gradients at the level of food groups have been reported in the Surveys of Lifestyles, Attitudes and Nutrition at each of the three time points 1998, 2002 and 2007( 122 , 123 ), so the Lifeways study corroborates that observation at the level of selected nutrient intakes.

The pregnancy outcomes were also examined in relation to indicators of maternal social position and health status( 107 109 ). Determinants of mothers’ self-rated health during pregnancy showed a strongly socially graduated pattern and mothers whose own parents were educated to third level had better self-rated health than those whose parents left education early( 107 ). Younger and less socially advantaged mothers tended to have lower birth-weight babies( 108 ). The dietary patterns of mothers during pregnancy were socially graduated, as was smoking status( 109 ). Predictors of pre-term delivery and occupational predictors of pregnancy outcomes were reported in this cohort( 111 112 ). Mothers required to do shiftwork tended to have a higher risk of pre-term delivery, adjusted for other factors( 111 ) and this cohort was included in a subsequent meta-analysis, which showed a small effect of shiftwork on risk for this outcome( 124 ).

While many studies report a social gradient to pregnancy outcomes, a few attempts to comprehensively explain the degree to which known health status and lifestyle variables explain that gradient have been made. In the Lifeways study low maternal educational level was associated with an increased risk of this clinical outcome of preterm delivery (hazard ratio 2·14, 95 % CI 1·04, 4·38) and notably the explanatory combination of a material factor such as rented or crowded home, and behavioural factors such as smoking, alcohol consumption and high saturated fat intake during pregnancy reduced the hazard ratio for low education level by 42 %( 112 ). We looked at predictors of low birth-weight of 3 kg or less both in this cohort and in another cohort of disadvantaged Traveller infants, a nomadic disadvantaged group in Ireland and found that maternal smoking and alcohol consumption were important predictors of this outcome, but when these factors were taken account of the birth-weight differential according to social class persisted. We used this cut-off point, as opposed to the clinical cut-off of 2.5 kg, as epidemiological studies show this is associated with later risk of adult chronic disease, providing empirical evidence in an Irish context for findings reported in other cohorts internationally( 113 ).

Follow-up when children averaged age 5 years

A number of analyses have been undertaken across the generations of participating families related to the wave when children now averaged age 5 years( 116 118 ). Although the responses were received for just 669 of 1126 women originally recruited and not all of these had complete examination data, there was no significant difference in baseline maternal BMI in this sweep's participants compared with that of non-participants, although these mothers were older on average than non-participants. We applied mixed effect models to take account of family relatedness, which enables correlation between family members to be modelled and also to take account of incomplete or variable numbers of family participants. Each family could contain up to seven possible members; in the child the height and weight were measured but for other adult family members the data were self-reported. We found consistent correlations for height between family members in both paternal and maternal lines, but the patterns for BMI were significant only for the maternal line. In these statistical models, education level, and also self-rated health and fruit and vegetable consumption patterns were accounted for because they each showed a social gradient and a relationship with BMI in previous analyses, with a strong significant family effect seen across the generations in the maternal line( 116 ).

The reported evidence in the general literature on the relative influence of paternal and maternal lines on children's BMI is mixed( 9 , 38 , 39 , 68 , 125 , 126 ). The Growing Up in Ireland study found that measured parental weight status was correlated with childhood obesity at age 9 years( 38 ). While the Avon Longitudinal Study of Parents and Children study for instance showed no distinction in strength of association between maternal and paternal lines( 39 ), the Generation R cohort study also showed a strong maternal pattern, although there was a paternal influence as well( 9 ).

Familial aggregation patterns in dietary intake were also assessed in the Lifeways study. Nuclear family effects were found, with the maternal association being stronger than the paternal association and the maternal grandmothers showed an association both with their own daughters’ diet and with that of their index grandchild's diet at age 5 years. The mother's current diet tended to be more strongly associated with that of her child than her pregnancy consumption, although in the case of non-breastfeeding mothers, dietary fat intake during pregnancy was more strongly associated( 117 ). Brion et al. ( 46 ), employing Avon Longitudinal Study of Parents and Children data, found a similar association with regard to prenatal maternal fat intake.

Maternal dietary intake at both time points was also examined in relation to child's BMI at age 5 years. A social gradient in relation to maternal fruit and vegetable intake was found during pregnancy and also when the child averaged age 5 years. Total energy intake in mothers was greater during pregnancy. Increased odds of overweight or obesity were found in mothers with higher intakes of sugar during pregnancy and higher fat intakes when the child was aged 5 years. Mothers with persistently high intakes of SFA and those who had lowered their sugar consumption since pregnancy were more likely to have overweight or obese children and we discuss the possible biological plausibility of these findings in that paper( 118 ). Again, cohort data on this issue are rare. The Southampton women's survey( 127 ) reported that after adjustment for maternal factors including height and duration of breastfeeding maternal n-6 PUFA intake positively predicted fat mass in children aged 4 and 6 years.

Dietary patterns and risk of childhood wheezing or asthma

A specific health outcome of interest that can already be examined in the children themselves is childhood wheeze or asthma, which is strongly suspected to have a dietary basis. The Lifeways study was one of the first to show that general practitioner-reported wheeze or asthma when the child averaged 3 years was inversely associated with maternal fruit and vegetable and fish consumption during pregnancy( 114 ). In Table 4, we show predictors of reported asthma for children at both time points when they were aged on average 3 and 5 years, replicating the original analysis at the new time point. Various biological, lifestyle and socioeconomic determinants of both child and maternal association that were significant predictors of asthma at the uni-variate level were included as covariates in multivariate models( 115 ). Separate logistic regression models were constructed to examine the effect of food group intake relative to asthma status at each phase of follow-up. Models were adjusted for combinations of birth-weight, sex, region, maternal age, maternal socioeconomic status (measured by education or GMS eligibility), parity, marital status and smoking in pregnancy. Oily fish intake proved to be protective of asthma at both year 3 (odds ratios (OR) = 0·52, 95 % CI 0·30, 0·92) and year 5 (OR = 0·51, 95 % CI 0·28, 0·92). Similarly, vegetable intake in the upper quartile proved protective at year 3 (OR = 0·42, 95 % CI 0·19, 0·93) and year 5 (OR = 0·43, 95 % CI 0·18, 0·99). This shows that mothers of asthmatic children tended to be younger, more disadvantaged and to have a lower oily fish, fruit and vegetable intake during pregnancy. Conversely, high intake of added or spreadable fats were related to asthma at year 3 follow-up (OR = 2·46, 95 % CI 1·34, 4·51). These data are quite consistent over the two time points and notably it is the baseline maternal dietary intake, rather than characteristics at aged 5 years, which show the main effects. The mechanisms through which this may operate are not as yet understood but may be nutrigenomic in origin and several other investigators have examined this question( 128 ). The Lifeways dataset has recently formed part of a pooled analysis as part of the CHICOS (Developing a Research strategy for Child Cohorts in Europe) consortium funded by the FP7 programme to elucidate these pathways further( 12 ); one analysis looked at the influence of maternal fish intake on birth outcomes( 129 ) and another on how birth outcomes might predict risk of childhood asthma( 130 ).

Table 4. Predictors of General Practitioner-reported wheeze (10·4 % of n 614) in children aged 3 years and of maternal reported asthma (14·3 % of n 511) in children aged 5 years in the Lifeways Cohort Study

GMS, General medical services; OR, odds ratio; prim, primary; sec, secondary; multip, multipara; nullip, nullipara.

* P < 0·05

** P = 0·05–0·09

Adjusted OR are reported for nutritional variables; all other values are from the univariate analysis.

Longitudinal follow-up when children were aged 9 years

Because these analyses to date showed such patterns of association across the generations, it was decided to follow-up adults and children again and between 2011 and 2013 further follow-up has taken place of the families. This included a short self-administered health questionnaire for all adults, with 1587 respondents in 593 families, 53·9 % of the original birth cohort families. A note search was undertaken initially in 2011 for grandparent deaths in the General Registry Office. Grandparental morbidity and mortality patterns were then related also to infant birth-weight. We related also the grandparents' blood pressure and lipoprotein profile at baseline recruitment stage to their grandchildren's birth-weight, the first such report to date and examined indicators of morbidity, stroke and diabetes based on self-report from the baseline questionnaire and general practice records for the grandparents at follow-up when the children averaged age 3 years. Maternal grandmothers' likelihood of both stroke and diabetes were inversely related to infant birth-weight and an inverse or U-shaped association was seen for maternal grandparents' mortality patterns, although not statistically significant. Conversely, the patterns for paternal grandparents and birth-weight were positive( 120 ) and paternal grandfathers who had now died were more likely to have had higher birth-weight grandchildren, adjusted for grandchildren's gestational age, gender, mothers' age, height, parity, educational status, smoking in pregnancy and grandparents' age, smoking and educational status. Given the novelty of these findings, and the possibility that some form of participant self-selection had influenced the association, we extended the General Registry Office note search in 2012 to all grandparents for whom we had any contact details and not just those who had been examined or completed a questionnaire at baseline. Preliminary analysis of these data reconfirm a positive association between higher birth-weight and paternal grandfathers' mortality( 121 ). Our findings in relation to the maternal line were therefore broadly consistent with most other published studies( 42 , 43 ). Although the Norwegian linkage study shows a contrasting pattern to ours in relation to the paternal lineage( 43 ), in that both paternal and maternal grandparental cardiovascular mortality patterns were inversely associated with birth-weight, there was an important effect for maternal smoking on that relationship and secular influences on lifestyle may be explaining the differences in patterns in the cohorts to date. There are very few evidenced studies published on this issue, which merits further research and investigation.

During 2012 we conducted examinations through their general practitioners of height and weight of children and their mothers and took salivary and hair samples for future genotyping, 301 were successfully completed and seventy-six of these mainly Dublin-based children also had blood samples taken for lipoprotein profile. Anthropometric measurements at birth, when children were aged 5 and 9 years are summarised in Table 5. We assessed the representativeness of the children who participated in the 2012 follow-up and had valid height and weight measurements. We compared these children with our original baseline cohort in terms of mothers' age, baseline BMI, education level and medical card holder status( 119 ). A greater proportion of children at follow-up had mothers who did not hold a medical card (90·3 v. 79·2 %, P < 0·001) and achieved a tertiary level of education (60·3 v. 45·4 %, P < 0·001). Mothers were also slightly older than the cohort at baseline (mean age 32·0 years v. 29·0 years, P < 0·001) but did not differ significantly in BMI. The east coast grandparents are undergoing a cardiovascular risk profile assessment in 2013, including also salivary and hair samples and morbidity follow-up of grandparents through general practitioners is ongoing in 2013. In the next stage of this study, a detailed analysis of these biological outcomes will be undertaken, related to the information gathered in previous sweeps of the study.

Table 5. Anthropometric measurements of Lifeways cross-generation cohort study children at birth, at age 5 and at age 9 years

Conclusions

In the present review, we establish that there is renewed and increasing interest in the associations between intrauterine and early childhood development and health outcomes in later life and the possible explanatory mechanisms, particularly in relation to dietary intake. There are contrasting mechanisms for lower birth-weight and higher birth-weight infants, often within the normal clinical range for this parameter. Empirical studies have focused in recent years on possible genetic and epigenetic mechanisms. Although some authors maintain that studies showing observational associations across generations are subject to significant bias, which may be addressed by more robust, un-confounded genetic associations across generations, the evidence base is at an early stage. Human cross-generation studies of parents and children are increasingly common but three-generation studies are rare. The Lifeways cohort study is unusual in that it contains information on three generations of family members and dietary information on all active cohort members including adults and children. Empirical evidence to date shows consistent familial and cross-generational patterns, particularly in the maternal line. The latest sweep includes biological information on children for the first time, including samples for genetic profiling.

Acknowledgements

The Lifways cross-generation cohort study is overseen by an inter-disciplinary steering group chaired by the Principal Investigator, Professor Cecily Kelleher. We thank especially the participating families for their ongoing engagement and support.

Financial Support

The study has been funded in all sweeps since its establishment by peer-reviewed grants received from the Health Research Board of Ireland, presently HRA_PHS/2010/13. The Health Research Board had no role in the design, analysis or writing of this paper. Dr Rebecca Somerville receives an Ad Astra stipend from the UCD School of Public Health, Physiotherapy and Population Science and Ms Hala Khalil receives PhD funding from the Government of Saudi Arabia.

Conflicts of Interest

None.

Authorship

All authors are members of the present Lifeways study team and contributed to the drafting and scientific content of this paper. C. K. has been principal investigator of the study team since its establishment and has overseen all sweeps and data analyses to date. C. M. and A. S. received the PhD degrees for their work on the 2007 sweep when children averaged age 5 years, K. V., H. K. and R. S. are presently completing their PhD degrees on the 2011–2013 sweep. J. O'B. is data manager for the study.

References

1. Barker, DJ, Winter, PD, Osmond, C et al. (1989) Weight in infancy and death from ischaemic heart disease. Lancet 2, 577580.
2. Mossberg, HO (1989) 40-year follow-up of overweight children. Lancet 26, 491493.
3. Barker, DJP, Gluckman, PD, Godfrey, FM et al. (1993) Fetal Nutrition and cardiovascular disease in adult life. Lancet 341, 938941.
4. (GOPEC) Genetics of Pre-eclampsia Consortium (2007) Babies, pre-eclamptic mothers and grandparents: a three-generation phenotyping study. J Hypertens 25, 849854.
5. Barker, DJ, Larsen, G, Osmond, C et al. (2012) The placental origins of sudden cardiac death. Int J Epidemiol 41, 13941399.
6. Barker, DJP (2012) The Developmental Origins of Chronic Disease. Pub Health 126, 185189.
7. Adair, L, Fall, CHD, Osmond, C et al. (2013) Associations of linear growth and relative weight gain during early life with adult height and human capital in countries of low and middle income: findings from five birth cohort studies. Lancet 382, 525534.
8. Cnattingus, S, Villamor, E, Lagerros, YT et al. (2012) High birth weight and obesity-a vicious circle across generations. Int J Obes 36, 13201324.
9. Durmus, B, Arends, LR, Ay, L et al. (2013) Parental anthropometrics, early growth and the risk of overweight in pre-school children: The Generation R study. Ped Obes 8, 339350.
10. Eriksson, JG, Kajantie, E, Thornburg, KL et al. (2011) Mother's body size and placental size predict coronary heart disease in men. Eur Heart J 32, 22972303.
11. Gray, l, Davey Smith, G, McConnachie, A et al. (2012) Parental height in relation to offspring coronary heart disease: examining transgenerational influences on health using the West of Scotland Midspan Family study. Int J Epidemiol 41, 17761785.
12. Larsen, PS, Kamper-Jørgensen, M, Adamson, A et al. (2013) Pregnancy and birth cohort resources in Europe: a large opportunity for aetiological child health research. Paediatr Perinat Epidemiol 27, 393414.
13. O'Mahony, D, Fallon, UB, Hannon, F et al. (2007) The Lifeways Cross-Generation Study: design, recruitment and data management considerations. Ir Med J 100, Suppl., 36.
14. Kelleher, C, Bury, G & Murphy, A (2012) The Lifeways study: an invaluable resource. Forum J Ir Coll Gen Pract 29, 1416.
15. Fallon, UB, Murphy, AW, Majawit, E et al. (2007) Primary care utilisation rates in pre-school children. Ir Med J 100, Suppl., 2327.
16. Kawachi, I & Berkman, L (2000) Social Epidemiology. Oxford: Oxford University Press.
17. Chmurznska, A (2010) Fetal programming: link between early nutrition, DNA methylation and complex disease. Nutr Rev 68, 8798.
18. Harrison, M & Langley-Evans, SC (2009) Intergenerational programming of impaired nephrogenesis and hypertension in rats following maternal protein restriction during pregnancy. Br J Nutr 101, 10201030.
19. Horikoshi, M, Yaghootkar, H, Mook-Kanamori, DO et al. (2013) New Loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism. Nat Genet 45, 7682.
20. Heijmans, BT, Tobi, EW, Stein, AD et al. (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 105, 1704617049.
21. Ivanova, E, Chen, J-H, Segonds-Pichon, A et al. (2012) DNA methylation at differentially methylated regions of imprinted genes is resistant to developmental programming by maternal nutrition. Epigenetics 7, 12001210.
22. Ponzio, BF, Carvalho, MHC, Fortes, ZB et al. (2012) Implications of maternal nutrient restriction in transgenerational programming of hypertension and endothelial dysfunction across F1–F3 offspring. Life Sci 90, 571577.
23. Relton, CL & Davey Smith, G (2010) Epigenetic epidemiology of common complex disease: prospects for prediction, prevention and treatment. PloS Med 7, e1000356.
24. Yaghootkar, H & Freathy, RM (2012) Genetic origins of low birth weight. Curr Opin Clin Nut Metab Care 15, 258264.
25. Poston, L (2012) Maternal obesity, gestational weight gain and diet as determinants of offspring long term health. Best Pract Res Clin Endocrinol Metab 26, 627639.
26. Pembrey, ME, Bygren, LO, Edvinsson, S et al. (2006) Sex-specific, male-line transgenerational responses in humans. Eur J Hum Gen 14, 159166.
27. Fox, M, Sear, R, Beise, J et al. (2010) Grandma plays favourites: X-chromosome relatedness and sex-specific childhood mortality. Proc R Soc B 277, 567573.
28. Andersen, AM & Osler, M (2004) Birth dimensions, parental mortality, and mortality in early adult age: a cohort study of Danish men born in 1953. Int J Epidemiol 33, 9299.
29. Smith, GD, Harding, S & Rosato, M (2000) Relation between infants' birth weight and mothers' mortality: prospective observational study. BMJ 320, 839840.
30. Friedlander, Y, Paltiel, O, Manor, O et al. (2007) Birthweight of offspring and mortality of parents: the Jerusalem Perinatal Study Cohort. Ann Epidemiol 17, 914922.
31. Wannamethee, SG, Lawlor, DA, Whincup, PH et al. (2004) Birhweight of offspring and paternal insulin resistance in late adulthood: cross sectional study. Diabetologia 47, 1218.
32. Palmer, TM, Nordestgarrard, BG, Benn, M et al. (2013) Association of plasma uric acid with ischaemic heart disease and blood pressure: Mendelian randomization analysis of two large cohorts. BMJ 347, f4262.
33. Lawlor, DA, Timpson, NJ, Harbord, RM et al. (2008) Exploring the developmental overnutrition hypothesis using Parental-Offspring associations and FTO as an instrumental variable. PLOS Med 5, e33.
34. Bonilla, C, Lawlor, DA, Ben-Shlomo, Y et al. (2012) Maternal and offspring fasting glucose and type 2 diabetes-associated genetic variants and cognitive function at age 8: a Mendelian randomization study in the Avon Longitudinal Study of Parents and Children. BMC Med Genet 13, 90.
35. Zambrano, E, Martinez-Samayoa, PM, Bautista, CJ et al. (2005) Sex differences in transgenerational alterations of growth and metabolism in progeny (F2) of female offspring (F1) of rats fed a low protein diet during pregnancy and lactation. J Physiol 566, 225236.
36. Torrens, C, Poston, L, Hanson, MA (2008) Transmission of raised blood pressure and endothelial dysfunction to the F2 generation induced by maternal protein restriction in the F0, in the absence of dietary challenge in the F1 generation. Br J Nutr 100, 760766.
37. Kaati, G, Bygren, LO, Pembrey, M et al. (2007) Transgenerational response to nutrition, early life circumstances and longevity. Eur J Hum Genet 15, 784790.
38. Keane, E, Layte, R, Harrington, J et al. (2012) Measured parental weight status and familial socio-economic status correlates with childhood overweight and obesity at age 9. PLoS One 7, e43503.
39. Davey Smith, G, Steer, C, Leary, S et al. (2007) Is there an intrauterine influence on obesity? Evidence from parent child associations in the Avon longitudinal Study of Parents and Children (ALSPAC). Arch Dis Child 10, 876880.
40. Manor, O & Koupil, I (2010) Birth weight of infants and mortality in their parents and grandparents: the Uppsala Birth Cohort Study. Int J Epidemiol 39, 12641276.
41. McCarron, P, Davey Smith, G, Hattersley, AT et al. (2004) Type 2 diabetes in grandparents and birth-weight in offspring and grandchildren in the ALSPAC study. J Epidemiol Commun Health 58, 517522.
42. Smith, GCS, Wood, AM, White, IR et al. (2010) Birth weight and the risk of cardiovascular disease in the maternal grandparents. Am J Epidemiol 171, 736744.
43. Naess, O, Stoltenberg, C, Hoff, DA et al. (2012) Cardiovascular mortality in relation to birth weight of children and grandchildren in 500 000 Norwegian families. Eur Heart J. [Epublication ahead of print].
44. Alves, E, Correia, S, Barros, H, Azevedo, A (2012) Prevalence of self-reported cardiovascular risk factors in Portuguese women: a survey after delivery. Int J Pub Health 57, 837847.
45. Bergmann, K, Bergmann, R, Von Kries, R et al. (2003) Early determinants of childhood overweight and adiposity in a birth cohort study: role of breast-feeding. Int J Obesity Relat Metab Disord 27, 162172.
46. Brion, M-JA, Ness, AR, Rogers, I et al. (2010) Maternal macronutrient and energy intakes in pregnancy and offspring intake at 10 y: exploring parental comparisons and prenatal effects. Am J Clin Nutr 91, 748756.
47. Burke, V, Beilin, LJ & Dunbar, D (2001) Family lifestyle and parental body mass index as predictors of body mass index in Australian children: a longitudinal study. Int J Obes Rel Metab Disord 25, 147157.
48. Brunekreef, B, Smit, J, De Jongste, J et al. (2002) The Prevention and Incidence of Asthma and Mite Allergy (PIAMA) birth cohort study: design and first results. Ped Allergy Immunol 13, 5560.
49. Chatzi, L, Plana, E, Daraki, V et al. (2009) Metabolic syndrome in early pregnancy and risk of preterm birth. Am J Epidemiol 170, 829836.
50. Dabelea, D, Hanson, RL, Lindsay, RS et al. (2000) Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. Diabetes 49, 22082211.
51. Davis, MM, McGonagle, K, Schoeni, RF et al. (2008) Grandparental and parental obesity influences on childhood overweight: implications for primary care practice. J Am Board Fam Med 21, 549554.
52. Dejmek, J, Solansky, I, Benes, I et al. (2000) The impact of polycyclic aromatic hydrocarbons and fine particles on pregnancy outcome. Environ Health Perspect 108, 11591164.
53. Devereux, G, Barker, RN & Seaton, A (2002) Antenatal determinants of neonatal immune responses to allergens. Clin Exp Allergy 32, 4350.
54. Drouillet, P, Forhan, A, De Lauzon-Guillain, B et al. (2009) Maternal fatty acid intake and fetal growth: evidence for an association in overweight women. The ‘EDEN mother–child’ cohort (study of pre- and early postnatal determinants of the child's development and health). Br J Nutr 101, 583591.
55. Dubois, L & Girard, M (2006) Early determinants of overweight at 4·5 years in a population-based longitudinal study. Int J Obes (Lond) 30, 610617.
56. Eggesbo, M, Stigum, H, Longnecker, MP et al. (2009) Levels of hexachlorobenzene (HCB) in breast milk in relation to birth weight in a Norwegian cohort. Environ Res 109, 559566. Epub 2009/05/05.
57. Emanuel, I, Filakti, H, Alberman, E et al. (1992) Intergenerational studies of human birthweight from the 1958 birth cohort. 1. Evidence for a multigenerational effect. Br J Obstet Gynaecol 99, 6774.
58. Gordon-Larsen, P, Adair, LS & Popkin, BM (2002) Ethnic differences in physical activity and inactivity patterns and overweight status. Obes Res 10, 141149.
59. Gracie, S, Lyon, A, Kehler, H et al. (2010) All Our Babies Cohort Study: recruitment of a cohort to predict women at risk of preterm birth through the examination of gene expression profiles and the environment. BMC Preg Childbirth 10, 87.
60. Grandjean, P, Weihe, P, Jorgensen, PJ et al. (1992) Impact of maternal seafood diet on fetal exposure to mercury, selenium, and lead. Arch Environ Health 47, 185195.
61. Guldner, L, Monfort, C, Rouget, F et al. (2007) Maternal fish and shellfish intake and pregnancy outcomes: a prospective cohort study in Brittany, France. Environ Health 6, 33.
62. Guxens, M, Ballester, F, Espada, M et al. (2012) Cohort profile: the INMA – INfancia y Medio Ambiente – (Environment and Childhood) project. Int J Epidemiol 41, 930940.
63. Grazuleviciene, R, Danileviciute, A, Nadisauskiene, R et al. (2009) Maternal smoking, GSTM1 and GSTT1 polymorphism and susceptibility to adverse pregnancy outcomes. Int J Environ Res Pub Health 6, 12821297.
64. Hawkes, CP, Hourihane, JOB, Kenny, LC et al. (2011) Gender- and gestational age-specific body fat percentage at birth. Pediatrics 128, e645ee51.
65. Hawkins, SS, Cole, TJ & Law, C (2008) Maternal employment and early childhood overweight: findings from the UK Millennium Cohort Study. Int J Obes (Lond) 32, 3038.
66. Hill, RA, Brophy, S, Brunt, H et al. (2010) Protocol of the baseline assessment for the Environments for Healthy Living (EHL) Wales cohort study. BMC Pub Health 10, 150.
67. Hryhorczuk, DO, Monaghan, S, Lukyanova, E et al. (1999) Collaborative research and research training through the “Family and Children of Ukraine” research programme. Int J Occup Environ Health 5, 213218.
68. Hui, LL, Nelson, EA, Yu, LM et al. (2003) Risk factors for childhood overweight in 6- to 7-y-old Hong Kong children. Int J Obes Relat Metab Disorders 27, 14111418.
69. Hunt, MS, Katzmarzyk, PT, Perusse, L et al. (2002) Familial resemblance of 7-year changes in body mass and adiposity. Obes Res 10, 507517.
70. Inskip, HM, Godfrey, KM, Robinson, SM et al. (2006) Cohort profile: the Southampton Women's Survey. Int J Epidemiol 35, 4248.
71. Jaddoe, VV, Duijn, C, Heijden, A et al. (2008) The Generation R Study: design and cohort update until the age of 4 years. Eur J Epidemiol 23, 801811.
72. Jedrychowski, W, Perera, FP, Tang, D et al. (2012) Impact of barbecued meat consumed in pregnancy on birth outcomes accounting for personal prenatal exposure to airborne polycyclic aromatic hydrocarbons: birth cohort study in Poland. Nutr 28, 372377.
73. Kaplowitz, HJ, Wild, KA, Mueller, WH et al. (1988) Serial and parent-child changes in components of body fat distribution and fatness in children from the London Longitudinal Growth Study, ages two to eighteen years. Hum Biol 60, 739758.
74. Karvonen, AM, Hyvärinen, A, Roponen, M et al. (2009) Confirmed moisture damage at home, respiratory symptoms and atopy in early life: a birth-cohort study. Pediatrics 124, e329e338.
75. Katier, N, Uiterwaal, CS, de Jong, BM et al. (2004) The Wheezing Illnesses Study Leidsche Rijn (WHISTLER): rationale and design. Eur J Epidemiol 19, 895903.
76. Kroke, A, Manz, F, Kersting, M et al. (2004) The DONALD Study. History, current status and future perspectives. Eur J Nutr 43, 4554.
77. Kummeling, I, Stelma, FF, Dagnelie, PC et al. (2007) Early life exposure to antibiotics and the subsequent development of Eczema, wheeze, and allergic sensitization in the first 2 years of life: the KOALA birth cohort study. Pediatrics 119, e225e231.
78. L'Abee, C, Vrieze, I, Kluck, T et al. (2011) Parental factors affecting the weights of the placenta and the offspring. J Perinat Med 39, 2734.
79. Laitinen, J, Power, C & Jarvelin, MR (2001) Family social class, maternal body mass index, childhood body mass index, and age at menarche as predictors of adult obesity. Am J Clin Nutr 74, 287294.
80. Lagström, H, Rautava, P, Kaljonen, A et al. (2012) Cohort profile: steps to the healthy development and well-being of children (the STEPS Study). Int J Epidemiol, Epublication ahead of print.
81. Li, L, Hardy, R, Kuh, D et al. (2008) Child-to-adult body mass index and height trajectories: a comparison of 2 British birth cohorts. Am J Epidemiol 168, 10081015.
82. Ludvigsson, J (2004) Milk consumption during pregnancy and infant birthweight. Acta Pædiatr 93, 14741478.
83. Magnus, P, Irgens, LM, Haug, K et al. (2006) Cohort profile: The Norwegian Mother and Child Cohort Study (MoBa). Int J Epidemiol 35, 11461150.
84. Mizutani, T, Suzuki, K, Kondo, N et al. (2007) Association of maternal lifestyles including smoking during pregnancy with childhood obesity. Obesity (Silver Spring) 15, 31333139.
85. Moschonis, G, Grammatikaki, E & Manios, Y (2008) Perinatal predictors of overweight at infancy and preschool childhood: the GENESIS study. Int J Obes (Lond) 32, 3947.
86. Nohr, EA, Vaeth, M, Baker, JL et al. (2008) Combined associations of prepregnancy body mass index and gestational weight gain with the outcome of pregnancy. Am J Clin Nutr 87, 17501759.
87. O' Callaghan, MJ, Williams, GM, Andersen, MJ et al. (1997) Prediction of obesity in children at 5 years: a cohort study. J Paediatr Child Health 33, 311316.
88. Oken, E, Huh, SY, Taveras, EM et al. (2005) Associations of maternal prenatal smoking with child adiposity and blood pressure. Obes Res 13, 20212028.
89. Park, HY, Park, JS, Sovcikova, E et al. (2009) Exposure to hydroxylated polychlorinated biphenyls (OH-PCBs) in the prenatal period and subsequent neurodevelopment in eastern Slovakia. Environ Health Perspect 117, 16001606.
90. Parkinson, KN, Pearce, MS, Dale, A et al. (2011) Cohort profile: the Gateshead Millennium Study. Int J Epidemiol 40, 308317.
91. Pirkola, J, Pouta, A, Bloigu, A et al. (2010) Risks of overweight and abdominal obesity at age 16 years associated with prenatal exposures to maternal prepregnancy overweight and gestational diabetes mellitus. Diabet Care 33, 11151121.
92. Polanska, K, Hanke, W, Gromadzinska, J et al. (2009) Polish mother and child cohort study–defining the problem, the aim of the study and methodological assumption. Int J Occup Med Environ Health 22, 383391.
93. Porta, D, Forastiere, F, Di Lallo, D et al. (2007) Enrolment and follow-up of a birth cohort in Rome. Epidemiol Prevenz 31, 303308.
94. Porta, D, Fantini, MP & GaCES (2006) Prospective cohort studies of newborns in Italy to evaluate the role of environmental and genetic characteristics on common childhood disorders. Ital J Ped 32, 350357.
95. Quante, M, Hesse, M, Dohnert, M et al. (2012) The LIFE child study: a life course approach to disease and health. BMC Pub Health 12, 1021.
96. Richiardi, L, Baussano, I, Vizzini, L et al. (2007) Feasibility of recruiting a birth cohort through the Internet: the experience of the NINFEA cohort. Eur J Epidemiol 22, 831837.
97. Schaefer-Graf, UM, Pawliczak, J, Passow, D et al. (2005) Birth weight and parental BMI predict overweight in children from mothers with gestational diabetes. Diab Care 28, 17451750.
98. Sekine, M, Yamagami, T, Hamanishi, S et al. (2002) Parental obesity, lifestyle factors and obesity in preschool children: results of the Toyama Birth Cohort study. J Epidemiol 12, 3339.
99. Skalkidou, A, Kieler, H, Stephansson, O et al. (2010) Ultrasound pregnancy dating leads to biased perinatal morbidity and neonatal mortality among post-term-born girls. Epidemiology 21, 791796.
100. Tsuchiya, KJ, Matsumoto, K, Suda, S et al. (2010) Searching for very early precursors of autism spectrum disorders: the Hamamatsu Birth Cohort for Mothers and Children (HBC). J Dev Orig Health Dis 1, 158173.
101. van Eijsden, M, Vrijkotte, TG, Gemke, RJ et al. (2011) Cohort profile: The Amsterdam Born Children and their Development (ABCD) Study. Int J Epidemiol 40, 11761186.
102. Vandentorren, S, Bois, C, Pirus, C et al. (2009) Rationales, design and recruitment for the Elfe longitudinal study. BMC Pediatr 9, 58.
103. Vecchi Brumatti, L, Montico, M, Russian, S et al. (2013) Analysis of motivations that lead women to participate (or not) in a newborn cohort study. BMC Pediatr 13, 53.
104. West, J, Manchester, B, Wright, J et al. (2011) Reliability of routine clinical measurements of neonatal circumferences and research measurements of neonatal skinfold thicknesses: findings from the Born in Bradford study. Paed Peri Epidemiol 25, 164171.
105. Albertson, AM, Anderson, GH, Crockett, SJ et al. (2003) Ready-to-eat cereal consumption: its relationship with BMI and nutrient intake of children aged 4 to 12 years. J Am Diet Assoc 103, 16131619.
106. Wickman, M, Kull, I, Pershagen, G et al. (2002) The BAMSE Project: presentation of a prospective longitudinal birth cohort study. Ped Allerg Immunol 13, 1113.
107. Segonds-Pichon, A, Hannon, F, Daly, S et al. (2007) Socio-demographic, lifestyle and cross-generation predictors of self-rated health in mothers during pregnancy. Ir Med J 100, Suppl., 712.
108. Murrin, C, Segonds-Pichon, A, Fallon, UB et al. (2007a) Self-reported pre-pregnancy maternal body mass index and infant birth-weight. Ir Med J 100, Suppl., 2023.
109. Murrin, C, Fallon, UB, Hannon, F et al. (2007b) Dietary habits of pregnant women in Ireland. Ir Med J 100, Suppl., 1215.
110. Kelleher, CC, Lotya, J, O'Hara, MC et al. (2008) Session 1: Public health nutrition. Nutrition and social disadvantage in Ireland. Proc Nutr Soc 67, 363370.
111. Niedhammer, I, O'Mahony, D, Daly, S et al. (2009) Occupational predictors of pregnancy outcomes in Irish working women in the Lifeways cohort. BJOG 116, 943952.
112. Niedhammer, I, Murrin, C, O'Mahony, D et al. (2012) Explanations for social inequalities in preterm delivery in the prospective Lifeways cohort in the Republic of Ireland. Eur J Pub Health 22, 533538.
113. Hamid, NA, Fitzpatrick, P, Rowan, A et al. (2013) Does the developmental plasticity hypothesis have application to Irish travellers? Findings from the All Ireland Traveller Health Study birth cohort 2008–2011. J Dev Origins Health Dis 4, 307316.
114. Fitz-simon, N, Fallon, U, O'Mahony, D et al. (2007) Mothers’ dietary patterns during pregnancy and risk of asthma symptoms in children at 3 years. Ir Med J 100, Suppl., 2732.
115. Viljoen, K, Shrivastava, A, O'Brien, J et al. (2012) Early determinants and prospective risk of Asthma symptoms in children at 5 years of age: the Lifeways Cross-Generation Cohort study. Ir J Med Sci 181, 116116.
116. Murrin, CM, Kelly, GE, Tremblay, RE et al. (2012) Body mass index and height over three generations: evidence from the Lifeways cross-generational cohort study. BMC Pub Health 25, 1281.
117. Shrivastava, A, Murrin, C, Sweeney, MR et al. (2012) Familial intergenerational and maternal aggregation patterns in nutrient intakes in the Lifeways Cross-Generation Cohort Study. Pub Health Nutr 13, 111.
118. Murrin, C, Shrivastava, A, Kelleher, CC (2013) Maternal macronutrient intake during pregnancy and 5 years postpartum and associations with child weight status aged five. Eur J Clin Nutr 67, 670679.
119. Khalil, H, Viljoen, K, O'Brien, J et al. (2012) Impact of the Irish recession on mothers' weight status: findings from the Lifeways Cross-generation Cohort Study 2011–2012. Faculty of Public Health Medicine 2012 Winter Scientific Meeting, Dublin, December 5th, 2012. Ir J Med Sci (In the Press).
120. Shrivastava, A, Murrin, C, O'Brien, J et al. (2012) Grandparental morbidity and mortality patterns are associated with infant birthweight in the Lifeways cross-generation cohort study. J Dev Orig Health Dis 3, 458468.
121. Viljoen, K, Shrivastava, A, Murrin, C et al. (2013) Paternal grandfathers' mortality association with grandchildren's birth-weight differs from that of other grandparents: 2012 mortality follow-up of the Lifeways cross-generation cohort study in the Republic of Ireland. Final Program for Society for Pediatric and Perinatal Epidemiological Research, 26th Annual Meeting, Boston, Mass, USA. Available at: http://www.sper.org/meeting/FinalProgram2013.pdf (accessed June 2013).
122. Kelleher, C, Friel, S, Nolan, G et al. (2002) Effect of social variation on the Irish diet. Proc Nutr Soc 61, 527536.
123. Niedhammer, I, Kerrad, S, Schütte, S et al. (2013) Material, psychosocial and behavioural factors associated with self-reported health in the Republic of Ireland: cross-sectional results from the SLAN survey. BMJ Open 3.
124. Bonzini, M, Palmer, KT, Coggon, D et al. (2011) Shift work and pregnancy outcomes: a systematic review with meta-analysis of currently available epidemiological studies. BJOG 118, 14291437.
125. Subramanian, SV, Ackerson, LK & Smith, GD (2010) Parental BMI and childhood undernutrition in India: an assessment of intrauterine influence. Pediatrics 3, e663e671.
126. Kivimaki, M, Lawlor, DA, Smith, GD et al. (2007) substantial intergenerational increases in body mass index are not explained by the fetal under-nutrition hypothesis: the Cardiovascular Risk in Young Finns Study. Am J Clin Nutr 5, 15091514.
127. Moon, RJ, Harvey, NC, Robinson, SM et al. (2013) Maternal plasma polyunsaturated fatty acid status in late pregnancy is associated with offspring body composition in childhood. J Clin Endocrinol Metab 98, 299307.
128. Devereux, G & Seaton, A (2005) Diet as a risk factor for atopy and asthma. J Allerg Clin Immunol 115, 11091117.
129. Leventakou, V, Roumeliotaki, T, Martinez, D et al. (2013) Fish intake during pregnancy, fetal growth and gestational length: a meta-analysis within 19 European Birth cohort studies. J Dev Orig Health Dis 4 (Suppl 2), S211.
130. Sonnenschein-van de Voort, AMM, Arends, LR, de Jongste, JC et al. (2013) Preterm birth, birth weight and infant growth and the risk of childhood asthma: a meta-analysis of 31 birth cohorts. Eur Resp Soc conference abstract proceedings 2013, 715S, www.ers-education.org/search/quick-search.aspx (accessed 27 November 2013).