Skip to main content Accessibility help
×
Home

Contents:

Information:

  • Access

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Longer-term effects of coffee on glucose and lipid metabolism
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        Longer-term effects of coffee on glucose and lipid metabolism
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        Longer-term effects of coffee on glucose and lipid metabolism
        Available formats
        ×
Export citation

There is much epidemiological evidence demonstrating an association between coffee drinking and reduced incidence of Type 2 Diabetes( 1 ), however there have been few longer term interventional studies, the majority of which have recruited habitual coffee drinkers( 2 ). Habitual coffee drinkers will have already gained any potential long-term benefits of coffee drinking and so the results of such intervention trials may be misleading. Additionally, previous studies may be confounded by inter-individual variation in caffeine metabolism. The rs762551 single nucleotide polymorphism (SNP) in the CYP1A2 gene has been demonstrated to influence caffeine metabolism, with carriers of the C allele being characterised as having a “slow” metaboliser phenotype. An association between coffee drinking and impaired fasting glucose has been observed, with a stronger association reported in the “slow” metaboliser phenotype( 3 ), however, to date, no coffee-intervention studies have genotyped their participants for this SNP.

This parallel-arm intervention investigated the effects of 12 weeks of coffee drinking on measures of glucose and lipid metabolism in coffee-naïve individuals, with secondary analysis by CYP1A2 genotype. Participants in the coffee group (n = 19) consumed 4 cups/day instant coffee for 12 weeks, whilst those in the control group (n = 8) remained coffee/caffeine free. Fasted and 2 h postprandial venous blood samples were taken at the start and end of the intervention.

There were no significant differences between coffee and control groups in their response to the intervention for any measure, however, secondary analysis of the coffee group by genotype revealed several differences. Those of a “slow” caffeine metaboliser phenotype (n = 9) displayed higher postprandial glucose and higher fasted and postprandial NEFA at baseline (p < 0·05) than those with the “fast” phenotype (n = 10). A visit*phenotype interaction was observed for the postprandial glucose response (p < 0·05), with the “fast” phenotype displaying an increased glucose response following the coffee intervention (Fig. 1B) and the “slow” phenotype displaying a reduced response (Fig. 1A). A visit*phenotype*time interaction was observed for the postprandial NEFA response (p < 0·05), with the “fast” phenotype displaying greater NEFA suppression following the intervention and less NEFA suppression observed in the “slow” phenotype (Fig. 2).

Fig. 1. Postprandial glucose response by visit.

Fig. 2. Postprandial NEFA response by visit.

These observed differences between “slow” and “fast” caffeine metaboliser phenotypes warrant further investigation but indicate there should be no one-size-fits-all recommendation with regard to coffee drinking and Type 2 Diabetes risk.

1. Ding, M, Bhupathiraju, SN, Chen, M, et al. (2014). Diabetes Care. 37, 569–86.
2. Kempf, K, Herder, C, Erlund, I, et al. (2010). Am J Clin Nutr. 91, 950–7.
3. Palatini, P, Benetti, E, Mos, L, et al. (2015). Eur J Epidemiol. 30, 209–17.