Skip to main content Accessibility help
×
Home

Contents:

Information:

  • Access

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        The influence of the extraction method on the DNA protective effects of seaweed extracts in Caco-2 cells
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        The influence of the extraction method on the DNA protective effects of seaweed extracts in Caco-2 cells
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        The influence of the extraction method on the DNA protective effects of seaweed extracts in Caco-2 cells
        Available formats
        ×
Export citation

Brown seaweeds contain a variety of compounds such as phlorotannins, carotenoids, vitamins, phospholipids and peptides that may benefit human health(1). The extraction method and type of solvent used influences the nature of compounds extracted from seaweeds(2). The solvents in the present study (water, ethanol and methanol) are of a polar nature and extract a range of hydrophilic compounds including the phlorotannins.

The objective of the present study was to determine the potential protective effect of extracts obtained from Ascophyllum nodosum (AN) and Fucus serratus (FS) against hydrogen peroxide (H2O2) and tert-butylhydroperoxide (tert-BOOH)-induced DNA damage in Caco-2 cells. Compounds were extracted using 100% H2O, 60% ethanol (EtOH) or 60% methanol (MeOH). Caco-2 cells were pre-treated with each seaweed extract for 24 h followed by exposure to either 50 μM H2O2 or 200 μM tert-BOOH for 30 min. DNA damage was assessed by the comet assay.

# Denotes significant protection (P<0.05) compared to oxidant control. †Denotes significant protection (P<0.01) compared to oxidant control. N 4 individual experiments. Statistical analysis was by ANOVA followed by the Dunnett's test.

The addition of 50 μM H2O2 and 200 μM tert-BOOH increased the DNA damage in Caco-2 cells to 55 and 30%, respectively. Preincubation of Caco-2 cells with AN (60% EtOH) and FS (100% H2O) extracts offered significant protection against tert-BOOH-induced DNA damage. Only the AN (100% H2O) extract significantly reduced H2O2-induced DNA damage. The MeOH extracts of AN and FS did not protect against either H2O2 or tert-BOOH-induced DNA damage. The DNA protective effects of the seaweeds may indicate their potential use in the pharmaceutical and functional food industry. The presence of hydrophilic polysaccharide compounds may account for the antioxidant ability of the 100% H2O extracts, whereas the antioxidant behaviour of the aqueous ethanol extracts may be due to the presence of a mixture of polar and less polar compounds.

Funding for this research was provided under NutraMara. The Marine Functional Foods Research Initiative (NutraMara project) is a programme for marine-based functional food development established by the Marine Institute and the Department of Agriculture, Fisheries and Food (DAFF). It is supported by funds provided under the Strategy for Science, Technology and Innovation 2006–2013 (SSTI) and the Food Institutional Research Measure (FIRM), to establish a Marine Functional Foods Research Programme.

1.Shahidi, F (2009) Trends Food Sci Tech 20, 376387.
2.Shanab, SMM (2007) IJAB 9, 220225.