Skip to main content Accessibility help
×
Home

Contents:

Information:

  • Access
  • Cited by 1

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Increased expression of serine biosynthetic pathway genes is associated with skeletal muscle hypertrophy in sheep
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        Increased expression of serine biosynthetic pathway genes is associated with skeletal muscle hypertrophy in sheep
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        Increased expression of serine biosynthetic pathway genes is associated with skeletal muscle hypertrophy in sheep
        Available formats
        ×
Export citation

Beta-adrenergic agonists (BA) and Growth Hormone (GH) induce muscle hypertrophy, associated with changes in nutrient mobilisation and utilization( 1 ). The aim of this present study was to investigate the mechanisms that mediate these effects in sheep treated with BA or GH for 6 days, by examining the changes in skeletal muscle transcriptome and blood metabolome.

Male lambs (120 days old) were all fed a high protein/energy diet ad-libitum, with the GH group (n = 10) receiving a single subcutaneous injection of bovine GH (3·75 mg/kg body weight, POSILAC, Monsanto) on day 1; the BA group (n = 10) receiving BA (cimaterol) at 10 mg/kg feed, whereas the control group (CO, n = 11) only had the ad-libitum feed. After 6 days sheep were slaughtered, plasma and samples of the Longissimus dorsi (LD), Supraspinatus (SS) muscles and liver were collected. The relative mRNA expression of the adult myosin heavy chain isoforms (MyHC I, IIA, IIX and IIB) were determined( 2 ). Metabolomic analysis of plasma samples was carried out by Metabolon Inc (USA) using GC/MS and LC/MS/MS platforms. The effect of treatments on the LD transcriptome was assessed on a subset of samples (n = 3 from each treatment) via a cross-species approach( 3 ) using the Affymetrix Human U133 + 2 GeneChip array (47 K human microarray). Verification of identified genes and proteins was by quantitative RT-PCR or western blotting, respectively, on LD, SS and livers from all animals.

BA, but not GH, significantly (P < 0·05) increased muscle weights and this was associated with an increase in MyHCIIX/IIB mRNA and decrease in MyHCIIA mRNA expression (P < 0·05), indicating a transition to large fast-glycolytic muscle fibre types. Products of triacylglycerol breakdown, including glycerol, monoacylglycerol and free fatty acids were all elevated in the plasma of both BA and GH treatments, but the free fatty acid profile suggested the effects were more pronounced with GH treatment (P < 0·05). Likewise GH rather than BA had a greater impact on elevating plasma glucose and associated metabolites (P < 0·05), indicative of insulin resistance. Analysis of the LD transcriptome identified 477 and 316 transcripts were significantly altered (P < 0·05 and 1·5 fold change) by BA and GH respectively, relative to controls. Gene ontogeny analysis (Genespring) of these transcripts indicated more pathways affected by BA than GH. BA decreased in oxidative respiration pathways (TCA cycle and oxidative phosphorylation) and upregulated serine biosynthetic pathway. Subsequent qRT-PCR analysis showed increases in expression of phosphoglycerate dehydrogenase (PHGDH) ((P < 0·001) and phosphoserine-aminotransferase (PSAT) (P < 0·001) mRNA, along with an increase (P < 0·01) in PHGDH protein in muscle from BA treated sheep relative to both control and GH treated sheep. Metabolomic analysis of plasma amino acids indicated no effect of BA treatment on plasma serine concentrations compared to controls, but a significant decrease in GH treated sheep (P < 0·05).

The serine biosynthetic pathway has been shown to be upregulated in various cancers and is thought to be a novel mechanism for hyperplastic growth( 4 ). We show for the first time that upregulation of the serine biosynthetic pathway is also associated with BA stimulated muscle hypertrophic growth. BA had a stronger muscle hypertrophic effect than GH over this short timeframe. Unlike GH, BA does not appear to have a major effect upon the systemic mobilisation of nutrients, but instead seems to targets muscle, activating muscle biosynthetic pathways that potentially provide the substrates required for growth.

This work was supported by the Biotechnology and Biological Sciences Research Council (BBSRC).

1. Bell, AW, Bauman, DE, Beermann, DH et al. (1998) J Nutr 128, 360S363S.
2. Hemmings, K, Parr, T, Daniel, ZC et al. (2009) J Anim Sci 87, 3915–22.
3. Graham, NS, May, ST, Daniel, ZC et al. (2011) Animal 5, 861–6.
4. Amelio, I, Cutruzzola, F, Antonov, A et al. (2014) Trends Biochem Sci 39, 191198.