Skip to main content Accessibility help
×
Home

The impact of fatty acid desaturase genotype on fatty acid status and cardiovascular health in adults

  • Colette M. O'Neill (a1) (a2) and Anne-Marie Minihane (a1)

Abstract

The aim of this review was to determine the impact of the fatty acid desaturase (FADS) genotype on plasma and tissue concentrations of the long-chain (LC) n-3 PUFA, including EPA and DHA, which are associated with the risk of several diet-related chronic diseases, including CVD. In addition to dietary intakes, which are low for many individuals, tissue EPA and DHA are also influenced by the rate of bioconversion from α-linolenic acid (αLNA). Δ-5 and Δ-6 desaturase enzymes, encoded for by FADS1 and FADS2 genes, are key desaturation enzymes involved in the bioconversion of essential fatty acids (αLNA and linoleic acid (LA)) to longer chained PUFA. In general, carriers of FADS minor alleles tend to have higher habitual plasma and tissue levels of LA and αLNA, and lower levels of arachidonic acid, EPA and also to a lesser extent DHA. In conclusion, available research findings suggest that FADS minor alleles are also associated with reduced inflammation and CVD risk, and that dietary total fat and fatty acid intake have the potential to modify relationships between FADS gene variants and circulating fatty acid levels. However to date, neither the size-effects of FADS variants on fatty acid status, nor the functional SNP in FADS1 and 2 have been identified. Such information could contribute to the refinement and targeting of EPA and DHA recommendations, whereby additional LC n-3 PUFA intakes could be recommended for those carrying FADS minor alleles.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The impact of fatty acid desaturase genotype on fatty acid status and cardiovascular health in adults
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The impact of fatty acid desaturase genotype on fatty acid status and cardiovascular health in adults
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The impact of fatty acid desaturase genotype on fatty acid status and cardiovascular health in adults
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: C. M. O'Neill, email colette.oneill@ucc.ie

References

Hide All
1. Bucher, HC, Hengstler, P, Schindler, C et al. (2002) N-3 polyunsaturated fatty acids in coronary heart disease: a meta-analysis of randomized controlled trials. Am J Med 112, 298304.
2. Mente, A, de Koning, L, Shannon, HS et al. (2009) A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch Intern Med 169, 659669.
3. Wang, Q, Liang, X, Wang, L et al. (2012) Effect of omega-3 fatty acids supplementation on endothelial function: a meta-analysis of randomized controlled trials. Atherosclerosis 221, 536543.
4. Wang, C, Harris, WS, Chung, M et al. (2006) n-3 Fatty acids from fish or fish-oil supplements, but not α-linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review. Am J Clin Nutr 84, 517.
5. Dacks, PA, Shineman, DW & Fillit, HM (2013) Current evidence for the clinical use of long-chain polyunsaturated n-3 fatty acids to prevent age-related cognitive decline and Alzheimer's disease. J Nutr Health Aging 17, 240251.
6. Welch, AA, Shakya-Shrestha, S, Lentjes, MA et al. (2010) Dietary intake and status of n-3 polyunsaturated fatty acids in a population of fish-eating and non-fish-eating meat-eaters, vegetarians, and vegans and the precursor-product ratio of α-linolenic acid to long-chain n-3 polyunsaturated fatty acids: results from the EPIC-Norfolk cohort. Am J Clin Nutr 92, 10401051.
7. León, H, Shibata, MC, Sivakumaran, S et al. (2008) Effect of fish oil on arrhythmias and mortality: systematic review. BMJ 337, a2931.
8. Studer, M, Briel, M, Leimenstoll, B et al. (2005) Effect of different antilipidemic agents and diets on mortality: a systematic review. Arch Intern Med 165, 725730.
9. Rizos, EC, Ntzani, EE, Bika, E et al. (2012) Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: a systematic review and meta-analysis. JAMA 308, 10241033.
10. Kwak, SM, Myung, SK, Lee, YJ et al. (2012) Efficacy of omega-3 fatty acid supplements (eicosapentaenoic acid and docosahexaenoic acid) in the secondary prevention of cardiovascular disease: a meta-analysis of randomized, double-blind, placebo-controlled trials. Arch Intern Med 172, 686694.
11. Fetterman, JW Jr & Zdanowicz, MM (2009) Therapeutic potential of n-3 polyunsaturated fatty acids in disease. Am J Health Syst Pharm 66, 11691179.
12. Janssen, CI & Kiliaan, AJ (2014) Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration. Prog Lipid Res 53, 117.
13. Chen, C, Yu, X & Shao, S (2015) Effects of omega-3 fatty acid supplementation on glucose control and lipid levels in Type 2 Diabetes: a meta-analysis. PLoS ONE 10, e0139565.
14. Jump, DB, Depner, CM, Tripathy, S et al. (2015) Potential for dietary omega-3 fatty acids to prevent nonalcoholic fatty liver disease and reduce the risk of primary liver cancer. Adv Nutr 6, 694702.
15. Scientific Advisory Committee on Nutrition. Committee on Toxicity of Chemicals in Food (2004) Advice on Fish Consumption: Benefits and Risks.
16. Minihane, AM (2013) Fish oil omega-3 fatty acids and cardio-metabolic health, alone or with statins. Eur J Clin Nutr 67, 536540.
17. Chilton, FH, Murphy, RC, Wilson, BA et al. (2014) Diet-gene interactions and PUFA metabolism: a potential contributor to health disparities and human diseases. Nutrients 6, 19932022.
18. Martinelli, N, Girelli, D, Malerba, G et al. (2008) FADS genotypes and desaturase activity estimated by the ratio of arachidonic acid to linoleic acid are associated with inflammation and coronary artery disease. Eur J Clin Nutr 88, 941949.
19. Sprecher, H (1981) Biochemistry of essential fatty acids. Prog Lipid Res 20, 1322.
20. Cho, HP, Nakamura, M & Clarke, SD (1999) Cloning, expression, and fatty acid regulation of the human delta-5 desaturase. J Biol Chem 274, 3733537339.
21. Cho, HP, Nakamura, MT & Clarke, SD (1999) Cloning, expression, and nutritional regulation of the mammalian delta-6 desaturase. J Biol Chem 274, 471477.
22. Marquardt, A, Stohr, H, White, K et al. (2000) cDNA cloning, genomic structure, and chromosomal localization of three members of the human fatty acid desaturase family. Genomics 66, 175183.
23. Burdge, GC (2006) Metabolism of α-linolenic acid in humans. Prostaglandins Leukot Essent Fatty Acids 75, 161168.
24. Schaeffer, L, Gohlke, H, Muller, M et al. (2006) Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum Mol Genet 15, 17451756.
25. Ameur, A, Enroth, S, Johansson, A et al. (2012) Genetic adaptation of fatty-acid metabolism: a human-specific haplotype increasing the biosynthesis of long-chain omega-3 and omega-6 fatty acids. Am J Hum Genet 90, 809820.
26. Wang, L, Athinarayanan, S, Jiang, G et al. (2015) Fatty acid desaturase 1 gene polymorphisms control human hepatic lipid composition. Hepatology 61, 119128.
27. Kwak, JH, Paik, JK, Kim, OY et al. (2011) FADS gene polymorphisms in Koreans: association with omega6 polyunsaturated fatty acids in serum phospholipids, lipid peroxides, and coronary artery disease. Atherosclerosis 214, 94100.
28. Li, S-W, Lin, K, Ma, P et al. (2013) FADS gene polymorphisms confer the risk of coronary artery disease in a Chinese Han population through the altered desaturase activities: based on high-resolution melting analysis. PLoS ONE 8, e55869.
29. Aulchenko, YS, Ripatti, S, Lindqvist, I et al. (2009) Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat genet 41, 4755.
30. Standl, M, Lattka, E, Stach, B et al. (2012) FADS1 FADS2 gene cluster, PUFA intake and blood lipids in children: results from the GINIplus and LISAplus studies. PLoS ONE 7, e37780.
31. Sabatti, C, Service, SK, Hartikainen, A-L et al. (2009) Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat Genet 41, 3546.
32. Blasbalg, TL, Hibbeln, JR, Ramsden, CE et al. (2011) Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am J Clin Nutr 93, 950962.
33. Hester, AG, Murphy, RC, Uhlson, CJ et al. (2014) Relationship between a common variant in the fatty acid desaturase (FADS) cluster and eicosanoid generation in humans. J Biol Chem 289, 2248222489.
34. Mathias, R, Pani, V & Chilton, F (2014) Genetic variants in the FADS gene: implications for dietary recommendations for fatty acid intake. Curr Nutr Rep 3, 139148.
35. Qin, L, Sun, L, Ye, L et al. (2011) A case–control study between the gene polymorphisms of polyunsaturated fatty acids metabolic rate-limiting enzymes and coronary artery disease in a Chinese Han population. Prostaglandins Leukot Essent Fatty Acids 85, 329333.
36. Lu, Y, Vaarhorst, A, Merry, AH et al. (2012) Markers of endogenous desaturase activity and risk of coronary heart disease in the CAREMA cohort study. PLoS ONE 7, e41681.
37. Song, Z, Cao, H, Qin, L et al. (2013) A case–control study between gene polymorphisms of polyunsaturated fatty acid metabolic rate-limiting enzymes and acute coronary syndrome in Chinese Han population. BioMed Res Int 2013, 928178.
38. Hellstrand, S, Sonestedt, E, Ericson, U et al. (2012) Intake levels of dietary long-chain PUFAs modify the association between genetic variation in FADS and LDL-C. J Lipid Res 53, 11831189.
39. Hellstrand, S, Ericson, U, Gullberg, B et al. (2014) Genetic variation in FADS1 has little effect on the association between dietary PUFA intake and cardiovascular disease. J Nutr 144, 13561363.
40. Gillingham, LG, Harding, SV, Rideout, TC et al. (2013) Dietary oils and FADS1-FADS2 genetic variants modulate [13C]α-linolenic acid metabolism and plasma fatty acid composition. Am J Clin Nutr 97, 195207.
41. Cormier, H, Rudkowska, I, Paradis, AM et al. (2012) Association between polymorphisms in the fatty acid desaturase gene cluster and the plasma triacylglycerol response to an n-3 PUFA supplementation. Nutrients 4, 10261041.
42. Porenta, SR, Ko, Y-A, Gruber, SB et al. (2013) Interaction of fatty acid genotype and diet on changes in colonic fatty acids in a Mediterranean diet intervention study. Cancer Prev Res 6, 11.
43. Berendsen, A, Santoro, A, Pini, E et al. (2013) A parallel randomized trial on the effect of a healthful diet on inflammageing and its consequences in European elderly people: design of the NU-AGE dietary intervention study. Mech Ageing Dev 134, 523530.
44. Cormier, H, Rudkowska, I, Lemieux, S et al. (2014) Effects of FADS and ELOVL polymorphisms on indexes of desaturase and elongase activities: results from a pre-post fish oil supplementation. Genes Nutr 9, 437.
45. Li, S-W, Wang, J, Yang, Y et al. (2016) Polymorphisms in FADS1 and FADS2 alter plasma fatty acids and desaturase levels in type 2 diabetic patients with coronary artery disease. J Transl Med 14, 19.
46. Albert, CM, Ma, J, Rifai, N et al. (2002) Prospective study of C-reactive protein, homocysteine, and plasma lipid levels as predictors of sudden cardiac death. Circulation 105, 25952599.
47. Flock, MR, Skulas-Ray, AC, Harris, WS et al. (2013) Determinants of erythrocyte omega-3 fatty acid content in response to fish oil supplementation: a dose–response randomized controlled trial. J Am Heart Assoc 2, e000513.
48. Raatz, SK, Rosenberger, TA, Johnson, LK et al. (2013) Dose-dependent consumption of farmed Atlantic salmon (Salmo salar) increases plasma phospholipid n-3 fatty acids differentially. J Acad Nutr Diet 113, 282287.
49. Baylin, A, Ruiz-Narvaez, E, Kraft, P et al. (2007) α-Linolenic acid, Δ6-desaturase gene polymorphism, and the risk of nonfatal myocardial infarction. Am J Clin Nutr 85, 554560.
50. Malerba, G, Schaeffer, L, Xumerle, L et al. (2008) SNPs of the FADS gene cluster are associated with polyunsaturated fatty acids in a cohort of patients with cardiovascular disease. Lipids 43, 289299.
51. Rzehak, P, Heinrich, J, Klopp, N et al. (2009) Evidence for an association between genetic variants of the fatty acid desaturase 1 fatty acid desaturase 2 (FADS1 FADS2) gene cluster and the fatty acid composition of erythrocyte membranes. Br J Nutr 101, 2026.
52. Mathias, RA, Vergara, C, Gao, L et al. (2010) FADS genetic variants and omega-6 polyunsaturated fatty acid metabolism in a homogeneous island population. J Lipid Res 51, 27662774.
53. Zietemann, V, Kröger, J, Enzenbach, C et al. (2010) Genetic variation of the FADS1 FADS2 gene cluster and n-6 PUFA composition in erythrocyte membranes in the European Prospective Investigation into Cancer and Nutrition-Potsdam study. Br J Nutr 104, 17481759.
54. Merino, DM, Johnston, H, Clarke, S et al. (2011) Polymorphisms in FADS1 and FADS2 alter desaturase activity in young Caucasian and Asian adults. Mol Genet Metab 103, 171178.
55. Freemantle, E, Lalovic, A, Mechawar, N et al. (2012) Age and haplotype variations within FADS1 interact and associate with alterations in fatty acid composition in human male cortical brain tissue. PLoS ONE 7, e42696.
56. Hong, SH, Kwak, JH, Paik, JK et al. (2013) Association of polymorphisms in FADS gene with age-related changes in serum phospholipid polyunsaturated fatty acids and oxidative stress markers in middle-aged nonobese men. Clin Interv Aging 8, 585596.
57. Roke, K, Ralston, JC, Abdelmagid, S et al. (2013) Variation in the FADS1/2 gene cluster alters plasma n-6 PUFA and is weakly associated with hsCRP levels in healthy young adults. Prostaglandins Leukot Essent Fatty Acids 89, 257263.
58. Horiguchi, S, Nakayama, K, Iwamoto, S et al. (2016) Associations between a fatty acid desaturase gene polymorphism and blood arachidonic acid compositions in Japanese elderly. Prostaglandins Leukot Essent Fatty Acids 105, 914.
59. Vaittinen, M, Walle, P, Kuosmanen, E et al. (2016) FADS2 genotype regulates delta-6 desaturase activity and inflammation in human adipose tissue. J Lipid Res 57, 5665.
60. Schuchardt, JP, Köbe, T, Witte, V et al. (2016) Genetic variants of the FADS gene cluster are associated with erythrocyte membrane LC PUFA levels in patients with mild cognitive impairment. J Nutr Health Aging 20, 611620.
61. Gieger, C, Geistlinger, L, Altmaier, E et al. (2008) genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet 4, e1000282.
62. Tanaka, T, Shen, J, Abecasis, GR et al. (2009) Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI Study. PLoS Genet 5, e1000338.
63. Kathiresan, S, Willer, CJ, Peloso, GM et al. (2009) Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 41, 5665.
64. Guan, W, Steffen, BT, Lemaitre, RN et al. (2014) Genome-wide association study of plasma N6 polyunsaturated fatty acids within the cohorts for heart and aging research in genomic epidemiology consortium. Circ Cardiovasc Genet 7, 321331.
65. Mozaffarian, D, Kabagambe, EK, Johnson, CO et al. (2015) Genetic loci associated with circulating phospholipid trans fatty acids: a meta-analysis of genome-wide association studies from the CHARGE Consortium. Am J Clin Nutr 101, 398406.
66. Lu, Y, Feskens, EJ, Dolle, ME et al. (2010) Dietary n-3 and n-6 polyunsaturated fatty acid intake interacts with FADS1 genetic variation to affect total and HDL-cholesterol concentrations in the Doetinchem Cohort Study. Am J Clin Nutr 92, 258265.
67. Cormier, H, Rudkowska, I, Paradis, A-M et al. (2012) Association between polymorphisms in the fatty acid desaturase gene cluster and the plasma triacylglycerol response to an n-3 PUFA supplementation. Nutrients 4, 10261041.
68. Al-Hilal, M, Alsaleh, A, Maniou, Z et al. (2013) Genetic variation at the FADS1-FADS2 gene locus influences delta-5 desaturase activity and LC-PUFA proportions after fish oil supplement. J Lipid Res 54, 542551.
69. Roke, K & Mutch, DM (2014) The role of FADS1/2 polymorphisms on cardiometabolic markers and fatty acid profiles in young adults consuming fish oil supplements. Nutrients 6, 22902304.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed