Skip to main content Accessibility help
×
Home

The impact of diet during early life and its contribution to later disease: critical checkpoints in development and their long-term consequences for metabolic health: Symposium on ‘Early nutrition and later disease: current concepts, research and implications’

  • Michael E. Symonds (a1), Sylvain P. Sebert (a1) and Helen Budge (a1)

Abstract

Changes in maternal diet at different stages of reproduction can have pronounced influences on the health and well-being of the resulting offspring, especially following exposure to an obesogenic environment. The mechanisms mediating adaptations in development of the embryo, placenta, fetus and newborn include changes in the maternal metabolic environment. These changes include reductions in a range of maternal counter-regulatory hormones such as cortisol, leptin and insulin. In the sheep, for example, targeted maternal nutrient restriction coincident with the period of maximal placental growth has pronounced effects on the development of the kidney and adipose tissue. As a consequence, the response of these tissues varies greatly following adolescent-onset obesity and ultimately results in these offspring exhibiting all the symptoms of the metabolic syndrome earlier in young adult life. Leptin administration to the offspring after birth can have some long-term differential effects, although much higher amounts are required to cause a response in small compared with large animal models. At the same time, the responsiveness of the offspring is gender dependent, which may relate to the differences in leptin sensitivity around the time of birth. Increasing maternal food intake during pregnancy, either globally or of individual nutrients, has little positive impact on birth weight but does impact on liver development. The challenge now is to establish which components of the maternal diet can be sustainably modified in order to optimise the maternal endocrine environment through pregnancy, thus ensuring feto–placental growth is appropriate in relation to an individual's gender and body composition.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The impact of diet during early life and its contribution to later disease: critical checkpoints in development and their long-term consequences for metabolic health
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The impact of diet during early life and its contribution to later disease: critical checkpoints in development and their long-term consequences for metabolic health
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The impact of diet during early life and its contribution to later disease: critical checkpoints in development and their long-term consequences for metabolic health
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Professor Michael E. Symonds, fax +44 115 823 0626, email michael.symonds@nottingham.ac.uk

References

Hide All
1.Freemark, M (2006) Regulation of maternal metabolism by pituitary and placental hormones: roles in fetal development and metabolic programming. Horm Res 65, Suppl. 3, 4149.
2.Symonds, ME, Pearce, S, Bispham, J et al. (2004) Timing of nutrient restriction and programming of fetal adipose tissue development. Proc Nutr Soc 63, 397403.
3.Hyatt, MA, Budge, H, Walker, D et al. (2007) Effects of maternal parity and late gestational nutrition on mRNA abundance for growth factors in the liver of postnatal sheep. Am J Physiol Regul Integr Comp Physiol 292, R1934R1942.
4.Symonds, ME, Stephenson, T, Gardner, DS et al. (2007) Long-term effects of nutritional programming of the embryo and fetus: mechanisms and critical windows. Reprod Fertil Dev 19, 5363.
5.Pepper, GV & Craig Roberts, S (2006) Rates of nausea and vomiting in pregnancy and dietary characteristics across populations. Proc Biol Sci 273, 26752679.
6.Symonds, ME (2009) Nutrition and its contribution to obesity and diabetes: a life-course approach to disease prevention? Proc Nutr Soc 68, 7177.
7.Gopalakrishnan, GS, Gardner, DS, Dandrea, J et al. (2005) Influence of maternal pre-pregnancy body composition and diet during early-mid pregnancy on cardiovascular function and nephron number in juvenile sheep. Br J Nutr 94, 938947.
8.Bloomfield, FH, Oliver, MH, Hawkins, P et al. (2003) A periconceptional nutritional origin for noninfectious preterm birth. Science 300, 606.
9.Edwards, LJ, McFarlane, JR, Kauter, KG et al. (2005) Impact of periconceptional nutrition on maternal and fetal leptin and fetal adiposity in singleton and twin pregnancies. Am J Physiol Regul Integr Comp Physiol 288, R39R45.
10.Mathews, F, Yudkin, P & Neil, A (1999) Influence of maternal nutrition on outcome of pregnancy: prospective cohort study. Br Med J 319, 339343.
11.Symonds, ME & Budge, H (2009) Nutritional models of the developmental programming of adult health and disease. Proc Nutr Soc 68, 173178.
12.Widdowson, EM (1950) Chemical composition of newly born animals. Nature 116, 626628.
13.Ozanne, SE, Nave, BT, Wang, CL et al. (1997) Poor fetal nutrition causes long-term changes in expression of insulin signaling components in adipocytes. Am J Physiol Regul Integr Comp Physiol 273, E46E51.
14.Fernandez-Twinn, DS, Ekizoglou, S, Wayman, A et al. (2006) Maternal low-protein diet programs cardiac beta-adrenergic response and signaling in 3-mo-old male offspring. Am J Physiol Regul Integr Comp Physiol 291, R429R436.
15.Brennan, KA, Kaufman, S, Reynolds, SW et al. (2008) Differential effects of maternal nutrient restriction through pregnancy on kidney development and later blood pressure control in the resulting offspring. Am J Physiol Regul Integr Comp Physiol 295, R197R205.
16.Bispham, J, Gopalakrishnan, GS, Dandrea, J et al. (2003) Maternal endocrine adaptation throughout pregnancy to nutritional manipulation: consequences for maternal plasma leptin and cortisol and the programming of fetal adipose tissue development. Endocrinology 144, 35753585.
17.Whorwood, CB, Firth, KM, Budge, H et al. (2001) Maternal undernutrition during early- to mid-gestation programmes tissue-specific alterations in the expression of the glucocorticoid receptor, 11b-hydroxysteroid dehydrogenase isoforms and type 1 angiotensin II receptor in neonatal sheep. Endocrinology 142, 17781785.
18.Sharkey, D, Gardner, DS, Fainberg, HP et al. (2009) Maternal nutrient restriction during pregnancy differentially alters the unfolded protein response in adipose and renal tissue of obese juvenile offspring. FASEB J 23, 13141324.
19.McMillen, IC & Robinson, JS (2005) Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 85, 571633.
20.Symonds, ME (2007) Integration of physiological and molecular mechanisms of the developmental origins of adult disease: new concepts and insights. Proc Nutr Soc 66, 442450.
21.Chan, LLY, Sebert, SP, Hyatt, MA et al. (2009) Effect of maternal nutrient restriction from early-to-mid gestation on cardiac function and metabolism after adolescent-onset obesity. Am J Physiol Regul Integr Comp Physiol 296, R1455R1463.
22.Bloomfield, FH, Oliver, MH, Hawkins, P et al. (2004) Periconceptional undernutrition in sheep accelerates maturation of the fetal hypothalamic-pituitary-adrenal axis in late gestation. Endocrinology 145, 42784285.
23.Jaquiery, AL, Oliver, MH, Bloomfield, FH et al. (2006) Fetal exposure to excess glucocorticoid is unlikely to explain the effects of periconceptional undernutrition in sheep. J Physiol 572, 109118.
24.Bloomfield, FH, Oliver, MH & Harding, JE (2007) Effects of twinning, birth size, and postnatal growth on glucose tolerance and hypothalamic-pituitary-adrenal function in postpubertal sheep. Am J Physiol Endocrinol Metab 292, E231E237.
25.Todd, SE, Oliver, MH, Jaquiery, AL et al. (2009) Periconceptional undernutrition of ewes impairs glucose tolerance in their adult offspring. Pediatr Res 65, 409413.
26.Gardner, DS, Pearce, S, Dandrea, J et al. (2004) Peri-implantation undernutrition programs blunted angiotensin II evoked baroreflex responses in young adult sheep. Hypertension 43, 12901296.
27.Gardner, DS, Tingey, K, Van Bon, BW et al. (2005) Programming of glucose-insulin metabolism in adult sheep after maternal undernutrition. Am J Physiol Regul Integr Comp Physiol 289, R947R954.
28.Gardner, DS, Van Bon, BW, Dandrea, J et al. (2006) Effect of periconceptional undernutrition and gender on hypothalamic-pituitary-adrenal axis function in young adult sheep. J Endocrinol 190, 203212.
29.Williams, PJ, Kurlak, LO, Perkins, AC et al. (2007) Hypertension and impaired renal function accompany juvenile obesity: the effect of prenatal diet. Kidney Int 72, 279289.
30.Heasman, L, Clarke, L, Firth, K et al. (1998) Influence of restricted maternal nutrition in early to mid gestation on placental and fetal development at term in sheep. Pediatr Res 44, 546551.
31.Heasman, L, Clarke, L, Stephenson, TJ et al. (1999) The influence of maternal nutrient restriction in early to mid-pregnancy on placental and fetal development in sheep. Proc Nutr Soc 58, 283288.
32.Gnanalingham, MG, Williams, P, Wilson, V et al. (2007) Nutritional manipulation between early to mid-gestation: effects on uncoupling protein-2, glucocorticoid sensitivity, IGF-I receptor and cell proliferation but not apoptosis in the ovine placenta. Reproduction 134, 615623.
33.Hay, WW (1995) Current topic: Metabolic interrelationships of placenta and fetus. Placenta 16, 1930.
34.Clarke, L, Heasman, L, Juniper, DT et al. (1998) Maternal nutrition in early-mid gestation and placental size in sheep. Br J Nutr 79, 359364.
35.Budge, H, Bispham, J, Dandrea, J et al. (2000) Effect of maternal nutrition on brown adipose tissue and its prolactin receptor status in the fetal lamb. Pediatr Res 47, 781786.
36.Sebert, SP, Hyatt, MA, Chan, LL et al. (2009) Maternal nutrient restriction between early-to-mid gestation and its impact upon appetite regulation following juvenile obesity. Endocrinology 150, 634641.
37.Symonds, ME, Stephenson, T & Budge, H (2009) Early determinants of cardiovascular disease: the role of early diet in later blood pressure control. Am J Clin Nutr 89, 1518S1522S.
38.Bouret, SG, Draper, SJ & Simerly, RB (2004) Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304, 108110.
39.Yuen, BS, Owens, PC, Muhlhausler, BS et al. (2003) Leptin alters the structural and functional characteristics of adipose tissue before birth. FASEB J 17, 11021104.
40.Mostyn, A, Bispham, J, Pearce, S et al. (2002) Differential effects of leptin on thermoregulation and uncoupling protein abundance in the neonatal lamb. FASEB J 16, 14381440.
41.Gnanalingham, MG, Mostyn, A, Webb, R et al. (2005) Differential effects of leptin administration on the abundance of UCP2 and glucocorticoid action during neonatal development. Am J Physiol Endocrinol Metab 289, E1093E1100.
42.Gnanalingham, MG, Mostyn, A, Wang, J et al. (2005) Tissue-specific effects of leptin administration on the abundance of mitochondrial proteins during neonatal development. J Endocrinol 187, 8188.
43.Bispham, J, Budge, H, Mostyn, A et al. (2002) Ambient temperature, maternal dexamethasone, and postnatal ontogeny of leptin in the neonatal lamb. Pediatr Res 52, 8590.
44.Masuzaki, H, Ogawa, Y, Sagawa, N et al. (1997) Non-adipose tissue production of leptin: leptin as a novel placenta-derived hormone in humans. Nat Med 3, 10291033.
45.Cottrell, EC, Cripps, RL, Duncan, JS et al. (2009) Developmental changes in hypothalamic leptin receptor: relationship with the postnatal leptin surge and energy balance neuropeptides in the postnatal rat. Am J Physiol Regul Integr Comp Physiol 296, R631R639.
46.Giralt, M, Martin, I, Iglesias, R et al. (1990) Ontogeny and perinatal modulation of gene expression in rat brown adipose tissue. Unaltered iodothyronine 5′-deiodinase activity is necessary for the response to environmental temperature at birth. Eur J Biochem 193, 297302.
47.Vickers, MH, Gluckman, PD, Coveny, AH et al. (2008) The effect of neonatal leptin treatment on postnatal weight gain in male rats is dependent on maternal nutritional status during pregnancy. Endocrinology 149, 19061913.
48.Vickers, MH, Gluckman, PD, Coveny, AH et al. (2005) Neonatal leptin treatment reverses developmental programming. Endocrinology 146, 42114216.
49.Flanagan, DE, Vaile, JC, Petley, GW et al. (2007) Gender differences in the relationship between leptin, insulin resistance and the autonomic nervous system. Regul Pept 140, 3742.
50.Waterland, RA, Travisano, M, Tahiliani, KG et al. (2008) Methyl donor supplementation prevents transgenerational amplification of obesity. Int J Obes (Lond) 32, 13731379.
51.Wong, SL, DePaoli, AM, Lee, JH et al. (2004) Leptin hormonal kinetics in the fed state: effects of adiposity, age, and gender on endogenous leptin production and clearance rates. J Clin Endocrinol Metab 89, 26722677.
52.Laml, T, Preyer, O, Schulz-Lobmeyr, I et al. (2001) Umbilical venous leptin concentration and gender in newborns. J Soc Gynecol Investig 8, 9497.
53.Gluckman, PD, Lillycrop, KA, Vickers, MH et al. (2007) Metabolic plasticity during mammalian development is directionally dependent on early nutritional status. Proc Natl Acad Sci USA 104, 1279612800.
54.Despres, JP & Lemieux, I (2006) Abdominal obesity and metabolic syndrome. Nature 444, 881887.
55.Hedley, AA, Ogden, CL, Johnson, CL et al. (2004) Prevalence of overweight and obesity among US children, adolescents, and adults, 1999–2002. JAMA 291, 28472850.
56.Catalano, PM & Ehrenberg, HM (2006) The short- and long-term implications of maternal obesity on the mother and her offspring. Br J Obstet Gynaecol 113, 11261133.
57.Sewell, MF, Huston-Presley, L, Super, DM et al. (2006) Increased neonatal fat mass, not lean body mass, is associated with maternal obesity. Am J Obstet Gynecol 195, 11001103.
58.Rajasingam, D, Seed, PT, Briley, AL et al. (2009) A prospective study of pregnancy outcome and biomarkers of oxidative stress in nulliparous obese women. Am J Obstet Gynecol 200, 395.e391395.e399.
59.Samuelsson, AM, Matthews, PA, Argenton, M et al. (2008) Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension 51, 383392.
60.McCurdy, CE, Bishop, JM, Williams, SM et al. (2009) Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J Clin Invest 119, 323335.
61.Warnes, DM, Seamark, RF & Ballard, FJ (1977) The appearance of gluconeogenesis at birth in sheep. Activation of the pathway associated with blood oxygenation. Biochem J 162, 627634.
62.Budge, H, Stephenson, T & Symonds, ME (2007) Maternal nutrient restriction is not equivalent to maternal biological stress. Curr Drug Targets 8, 888893.
63.Bertram, CE, Trowern, AR, Copin, N et al. (2001) The maternal diet during pregnancy programs altered expression of the glucocorticoid receptor and type 2 11b-hydroxysteroid dehydrogenase: Potential molecular mechanisms underlying the programming of hypertension in utero. Endocrinology 142, 28412853.
64.Symonds, ME, Budge, H, Mostyn, A et al. (2007) Maternal diet through pregnancy – the key to future good health of the next generation? In Nutrition Research Advances, pp. 223240 [Watkins, SV, editor]. New York: Nova Science Publishers, Inc.
65.Ahima, RS, Prabakaran, D & Flier, JS (1998) Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function. J Clin Invest 101, 10201027.

Keywords

Related content

Powered by UNSILO

The impact of diet during early life and its contribution to later disease: critical checkpoints in development and their long-term consequences for metabolic health: Symposium on ‘Early nutrition and later disease: current concepts, research and implications’

  • Michael E. Symonds (a1), Sylvain P. Sebert (a1) and Helen Budge (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.