Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T18:07:34.047Z Has data issue: false hasContentIssue false

Fuel selection by the kidney: adaptation to starvation

Published online by Cambridge University Press:  28 February 2007

Gabriel Baverel
Affiliation:
Laboratoire de Physiopathologie Métabolique et Rénale, Faculté de Médecine Alexis Carrel, 12 rue Guillaume Paradin, 69372 Lyon Cedex 08, France
Bernard Ferrier
Affiliation:
Laboratoire de Physiopathologie Métabolique et Rénale, Faculté de Médecine Alexis Carrel, 12 rue Guillaume Paradin, 69372 Lyon Cedex 08, France
Mireille Martin
Affiliation:
Laboratoire de Physiopathologie Métabolique et Rénale, Faculté de Médecine Alexis Carrel, 12 rue Guillaume Paradin, 69372 Lyon Cedex 08, France
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Meeting Report
Copyright
Copyright © The Nutrition Society 1995

References

Adler, S. & Preuss, H. G. (1972). Interrelationships between citrate metabolism, ammoniagenesis, and gluconeogenesis in renal cortex in vitro. Journal of Laboratory and Clinical Medicine 79, 505515.Google ScholarPubMed
Anaizi, N. H. & Cohen, J. J. (1991). Kinetics of glucose decarboxylation in the substrate-limited isolated perfused kidney. Renal Physiology and Biochemistry 14, 8191.Google ScholarPubMed
Bagnasco, S., Good, D., Balaban, R. & Burg, M. (1985). Lactate production in isolated segments of the rat nephron. American Journal of Physiology 248, F522F526.Google ScholarPubMed
Barac-Nieto, M. (1986). Renal reabsorption and utilization of hydroxybutyrate and acetoacetate in starved rats. American Journal of Physiology 251, F257F265.Google ScholarPubMed
Bartlett, S., Espinal, J., Janssens, P. & Ross, B. D. (1984). The influence of renal function on lactate and glucose metabolism. Biochemical Journal 219, 7378.CrossRefGoogle ScholarPubMed
Bastin, J., Cambon, N., Thompson, M., Lowry, O. H. & Burch, H. (1987). Change in energy reserves in different segments of the nephron during brief ischemia. Kidney International 31, 12391247.CrossRefGoogle ScholarPubMed
Baverel, G. & Lund, P. (1979). A role for bicarbonate in the regulation of mammalian glutamine metabolism. Biochemical Journal 184, 599606.CrossRefGoogle ScholarPubMed
Baverel, G., Michoudet, C. & Martin, G. (1984). Role of fatty acids in simultaneous regulation of flux through glutaminase and glutamine synthetase in rat kidney cortex. In Glutamine Metabolism in Mammalian Tissues, pp. 187202 [Häussinger, D. and Sies, H., editors]. Berlin: Springer Verlag.CrossRefGoogle Scholar
Bennett, F. I., Alexander, J. E., Roobol, A. & Alleyne, G. A. O. (1975). Effect of starvation on renal metabolism in the rat. Kidney International 7, 380384.CrossRefGoogle ScholarPubMed
Bowman, R. H. (1970). Gluconeogenesis in the isolated perfused rat kidney. Journal of Biological Chemistry 245, 16041612.CrossRefGoogle ScholarPubMed
Burch, H. B., Bross, T. E., Brooks, C. A., Cole, B. R. & Lowry, O. H. (1984). The distribution of six enzymes of oxidative metabolism along the rat nephron. Journal of Histochemistry and Cytochemistry 32, 731736.CrossRefGoogle ScholarPubMed
Burch, H. B., Choi, S., McCarthy, W. Z., Wong, P. Y. & Lowry, O. H. (1978 a). The location of glutamine synthetase within the rat and the rabbit nephron. Biochemical and Biophysical Research Communications 82, 498505.CrossRefGoogle ScholarPubMed
Burch, H. B., Hays, A. E., McCreary, M. D., Cole, B. R., Chi, M. M. Y., Dence, C. N. & Lowry, O. H. (1982). Relationships in different parts of the nephron between enzymes of glycerol metabolism and the metabolite changes which result from large glycerol loads. Journal of Biological Chemistry 257, 36763679.CrossRefGoogle ScholarPubMed
Burch, H. B., Lowry, O. H., Perry, S. G., Fan, L. & Fagioli, S. (1974). Effect of age on pyruvate kinase and lactate dehydrogenase distribution in rat kidney. American Journal of Physiology 226, 12271231.CrossRefGoogle ScholarPubMed
Burch, H. B., Narins, R. G., Chu, C., Fagioli, S., Choi, S., McCarthy, W. & Lowry, O. H. (1978 b). Distribution along the rat nephron of three enzymes of gluconeogenesis in acidosis and starvation. American Journal of Physiology 235, F246F253.Google ScholarPubMed
Burckardt, G. & Ullrich, K. J. (1989). Organic anion transport across the contraluminal membrane. Dependence on sodium. Kidney International 36, 370377.CrossRefGoogle Scholar
Chauvin, M. F., Mégnin-Chanet, F., Martin, G., Lhoste, J. M. & Baverel, G. (1994). The rabbit kidney tubule utilizes glucose for glutamine synthesis. A 13C NMR study. Journal of Biological Chemistry 269, 2602526033.CrossRefGoogle ScholarPubMed
Chin, E., Zhou, J. & Bondy, C. (1993). Anatomical and developmental patterns of facilitative glucose transporter gene expression in the rat kidney. Journal of Clinical Investigation 91, 18101815.CrossRefGoogle ScholarPubMed
Churchill, P. C., Belloni, F. L. & Churchill, M. C. (1973). Net glucose release in the rat. American Journal of Physiology 225, 528531.CrossRefGoogle ScholarPubMed
Cohen, J. J. & Barac-Nieto, M. (1973). Renal metabolism of substrates in relation to renal function. In Handbook of Physiology. Section 8: Renal Physiology, pp. 9091011 [Orloff, J. and Berliner, R. W., editors]. Washington, D.C.: American Physiological Society.Google Scholar
Cohen, J. J., Kook, Y. J. & Little, J. R. (1977). Substrate-limited function and metabolism of the isolated perfused rat kidney: Effects of lactate and glucose. Journal of Physiology 266, 103121.CrossRefGoogle ScholarPubMed
Curthoys, N. P. & Lowry, O. H. (1973). The distribution of glutaminase isoenzymes in the various structures of the nephron in normal, acidotic and alkalotic rat kidney. Journal of Biological Chemistry 248, 162168.CrossRefGoogle ScholarPubMed
Damian, A. C. & Pitts, R. F. (1970). Rates of glutaminase I and glutamine synthetase reactions in rat kidney in vivo. American Journal of Physiology 218, 12491255.CrossRefGoogle ScholarPubMed
Dominguez, J. H., Camp, C., Maianu, L. & Garvey, W. T. (1992). Glucose transporters of rat proximal tubule: differential expression and subcellular distribution. American Journal of Physiology 262, F807F812.Google ScholarPubMed
Elhamri, M., Martin, M., Ferrier, B. & Baverel, G. (1993). Substrate uptake and utilization by the kidney of fed and starved rats in vivo. Renal Physiology and Biochemistry 16, 311324.Google ScholarPubMed
Ferrier, B., Martin, M., Janbon, B. & Baverel, G. (1992). Transport of β-hydroxybutyrate and acetoacetate along the rat nephron: a micropuncture study. American Journal of Physiology 262, F762F769.Google ScholarPubMed
Foreman, J. W., Reynolds, R. A., Ginkinger, K. & Segal, S. (1983). Effect of acidosis on glutamine transport by isolated renal brush-border and basolateral-membrane vesicles. Biochemical Journal 212, 713720.CrossRefGoogle ScholarPubMed
Frohnert, P. P., Hohman, B., Zwiebel, R. & Baumann, K. (1970). Free flow micropuncture studies of glucose transport in the rat nephron. Pflügers Archiv 315, 6685.CrossRefGoogle ScholarPubMed
Garcia, M. L., Benavides, J. & Valdivieso, F. (1980). Ketone body transport in renal brush-border membrane vesicles. Biochimica et Biophysica Acta 600, 922930.CrossRefGoogle ScholarPubMed
Goldstein, L. (1987). Renal substrate utilization in normal and acidotic rats. American Journal of Physiology 253, F351F357.Google ScholarPubMed
Goldstein, L., Boylan, J. M. & Schröck, H. (1980). Adaptation of renal ammonia production in the diabetic ketoacidotic rat. Kidney International 17, 5765.CrossRefGoogle ScholarPubMed
Goldstein, L., Solomon, R. J., Perlman, D. F., McLaughlin, P. M. & Taylor, M. A. (1982). Ketone body effects on glutamine metabolism in isolated kidneys and mitochondria. American Journal of Physiology 243, F181F187.Google ScholarPubMed
Good, D. & Burg, M. (1984). Ammonia production by individual segments of the rat nephron. Journal of Clinical Investigation 73, 602610.CrossRefGoogle ScholarPubMed
Guder, W. G. & Morel, F. (1992). Biochemical characterization of individual nephron segments. In Handbook of Physiology. Section 8: Renal Physiology, vol. 2, pp. 21192164 [Windhager, E. E., editor]. Oxford: Oxford University Press.Google Scholar
Guder, W. G. & Ross, B. D. (1984). Enzyme distribution along the nephron. Kidney International 26, 101111.CrossRefGoogle ScholarPubMed
Guder, W. G. & Schmidt, U. (1976). Substrate and oxygen dependence of renal metabolism. Kidney International 10, S32S38.Google Scholar
Guder, W. G., Wagner, S. & Wirthensohn, G. (1986). Metabolic fuels along the nephron: Pathways and intracellular mechanisms of interaction. Kidney International 29, 4145.CrossRefGoogle ScholarPubMed
Guder, W. G. & Wieland, O. H. (1972). Metabolism of isolated kidney tubules. Additive effects of parathyroid hormone and free fatty acids on renal gluconeogenesis. European Journal of Biochemistry 31, 6979.CrossRefGoogle ScholarPubMed
Guder, W. G., Wiesner, W., Stukowski, B. & Wieland, O. (1971). Metabolism of isolated kidney tubules. Oxygen consumption, gluconeogenesis and the effect of cyclic nucleotides in tubules from starved rats. Hoppe-Seyler's Zeitschrift für physiologische Chemie 352, 13191328.CrossRefGoogle ScholarPubMed
Gullans, S. R., Harris, S. I. & Mandel, L. J. (1984). Glucose-dependent respiration in suspensions of rabbit cortical tubules. Journal of Membrane Biology 78, 257262.CrossRefGoogle ScholarPubMed
Halperin, M., Jungas, R. L., Pichette, C. & Goldstein, M. (1982). A quantitative analysis of renal ammoniagenesis and energy balance: a theoretical approach. Canadian Journal of Physiology and Pharmacology 60, 14311435.CrossRefGoogle ScholarPubMed
Hems, D. A. (1972). Metabolism of glutamine and glutamic acid by isolated perfused kidneys of normal and acidotic rats. Biochemical Journal 130, 671680.CrossRefGoogle ScholarPubMed
Hems, D. A. & Gaja, G. (1972). Carbohydrate metabolism in the isolated perfused rat kidney. Biochemical Journal 128, 421426.CrossRefGoogle ScholarPubMed
Hohenegger, M. & Schuh, H. (1980). Uptake and fatty acid synthesis by the rat kidney. International Journal of Biochemistry 12, 169172.CrossRefGoogle ScholarPubMed
Hohenegger, M., Wittmann, G. & Dalheim, H. (1973). Oxidation of fatty acids by different zones of the rat kidney. Pflügers Archiv 341, 105112.CrossRefGoogle ScholarPubMed
Hus-Citharel, A. & Morel, F. (1986). Coupling of metabolic CO2 production to ion transport in isolated rat thick ascending limbs and collecting tubules. Pflügers Archiv 407, 421427.CrossRefGoogle ScholarPubMed
Hwang, J. J. & Curthoys, N. P. (1991). Effect of acute alterations in acid-base balance on rat renal glutaminase and phosphoenolpyruvate carboxykinase gene expression. Journal of Biological Chemistry 266, 93929396.CrossRefGoogle ScholarPubMed
Iynedjian, P. B., Ballard, F. J. & Hanson, R. W. (1975). The regulation of phosphoenolpyruvate carboxykinase (GTP) synthesis in rat kidney cortex. The role of acid-base balance and glucocorticoids. Journal of Biological Chemistry 250, 55965603.CrossRefGoogle ScholarPubMed
Iynedjian, P. B. & Hanson, R. W. (1977). Messenger RNA for renal phosphoenolpyruvate carboxykinase (GTP). Journal of Biological Chemistry 252, 83988403.CrossRefGoogle ScholarPubMed
Iynedjian, P. B. & Peters, G. (1974). Phosphoenolpyruvate carboxykinase and gluconeogenesis in renal cortex of starved rats. American Journal of Physiology 226, 12811285.CrossRefGoogle ScholarPubMed
Janssens, P., Hems, R. & Ross, B. (1980). The metabolic fate of lactate in renal cortical tubules. Biochemical Journal 190, 2737.CrossRefGoogle ScholarPubMed
Jörgensen, K. E. & Sheikh, M. I. (1985). Mechanisms of uptake of ketone bodies by luminal-membrane vesicles. Biochimica et Biophysica Acta 814, 2334.CrossRefGoogle ScholarPubMed
Jung, K. Y., Uchida, S. & Endou, H. (1989). Nephrotoxicity assessment by measuring cellular ATP content. I. Substrate specificities in the maintenance of ATP content in isolated rat nephron segments. Toxicology and Applied Pharmacology 100, 369382.CrossRefGoogle ScholarPubMed
Kamm, D. E. & Strope, G. L. (1972). The effects of acidosis and alkalosis on the metabolism of glutamine and glutamate in renal cortex slices. Journal of Clinical Investigation 51, 12511263.CrossRefGoogle Scholar
Kante, A., Malki, M. C., Coquard, C. & Latruffe, N. (1990). Metabolic control of the expression of mitochondrial D-β-hydroxybutyrate dehydrogenase, a ketone body converting enzyme. Biochimica et Biophysica Acta 1033, 291297.CrossRefGoogle ScholarPubMed
Kida, K., Nakajo, S., Kamiya, F., Toyama, Y., Nishio, T. & Nakagawa, H. (1978). Renal net glucose release in vivo and its contribution to blood glucose in rats. Journal of Clinical Investigation 62, 721726.CrossRefGoogle ScholarPubMed
Klein, K. L., Wang, M. S., Torikai, S., Davidson, W. D. & Kurokawa, K. (1981). Substrate oxidation by isolated single nephron segments of the rat. Kidney International 20, 2935.CrossRefGoogle ScholarPubMed
Krebs, H. A., Bennett, D. A. H., de Gasquet, P., Gascoyne, T. & Yoshida, T. (1963). Renal gluconeogenesis. The effect of diet on the gluconeogenic capacity of rat-kidney-cortex slices. Biochemical Journal 86, 2227.CrossRefGoogle ScholarPubMed
Krebs, H. A., Hems, R., Weidemann, M. J. & Speake, R. N. (1966). The fate of isotopic carbon in kidney cortex synthesizing glucose from lactate. Biochemical Journal 101, 242248.CrossRefGoogle ScholarPubMed
Krebs, H. A., Speake, R. N. & Hems, R. (1965). Acceleration of renal gluconeogenesis by ketone bodies and fatty acids. Biochemical Journal 94, 712720.CrossRefGoogle ScholarPubMed
Kriz, W. & Bankir, L. (1988). A standard nomenclature for structures of the kidney. Kidney International 33, 17.Google ScholarPubMed
Kurokawa, K. K., Nagami, G. & Yamaguchi, D. T. (1985). Transport and substrate metabolism of the kidney. In Renal Biochemistry, pp. 176223 [Kinne, R. K. H., editor]. Amsterdam: Elsevier Science Publishers B. V.Google Scholar
Kurokawa, K. & Rasmussen, H. (1973). Ionic control of renal gluconeogenesis. III. The effects of changes in pH, pCO2, and bicarbonate concentration. Biochimica et Biophysica Acta 313, 4258.CrossRefGoogle Scholar
Le Bouffant, F., Hus-Citharel, A. & Morel, F. (1984). Metabolic CO2 production by isolated single pieces of rat distal nephron. Pflügers Archiv 401, 346353.CrossRefGoogle ScholarPubMed
Le Hir, M. & Dubach, U. C. (1982 a). Activities of enzymes of the tricarboxylic acid cycle in segments of the rat nephron. Pflügers Archiv 395, 239245.CrossRefGoogle ScholarPubMed
Le Hir, M. & Dubach, U. C. (1982 b). Peroxisomal and mitochondrial beta-oxidation in the rat kidney: Distribution of fatty-acyl-coenzyme A oxidase and 3-hydroxyacyl-coenzyme A dehydrogenase activities along the nephron. Journal of Histochemistry and Cytochemistry 30, 441444.CrossRefGoogle ScholarPubMed
Leichtweiss, H. P., Lübbers, D. W., Weiss, C., Baumgärtl, H. & Reschke, W. (1969). The oxygen supply of the rat kidney: Measurements of intrarenal pO2. Pflügers Archiv 309, 328349.CrossRefGoogle Scholar
Lemieux, G., Baverel, G., Vinay, P. & Wadoux, P. (1976). Glutamine synthetase and glutamyltransferase in the kidney of man, dog and rat. American Journal of Physiology 231, 10681073.CrossRefGoogle ScholarPubMed
Lowry, M. & Ross, B. D. (1980). Activation of oxoglutarate dehydrogenase in the kidney in response to acute acidosis. Biochemical Journal 190, 771780.CrossRefGoogle ScholarPubMed
Meisner, H. M., Loose, D. S. & Hanson, R. W. (1985). Effect of hormones on transcription of the gene for cytosolic phosphoenolpyruvate carboxykinase (GTP) in rat kidney. Biochemistry 24, 421425.CrossRefGoogle ScholarPubMed
Michoudet, C., Chauvin, M. F. & Baverel, G. (1994). Glutamine synthesis from glucose and ammonium chloride by guinea-pig kidney tubules. Biochemical Journal 297, 6974.CrossRefGoogle ScholarPubMed
Needleman, P., Passonneau, J. & Lowry, O. H. (1968). Distribution of glucose and related metabolites in rat kidney. American Journal of Physiology 215, 655659.CrossRefGoogle ScholarPubMed
Nishiitsuji, J. M., Ross, B. D. & Krebs, H. A. (1967). Metabolic activities of the isolated perfused rat kidney. Biochemical Journal 103, 852862.CrossRefGoogle Scholar
Nonoguchi, H., Takehara, Y. & Endou, H. (1986). Intra- and inter-nephron heterogeneity of ammoniagenesis in rats: effects of chronic metabolic acidosis and potassium depletion. Pflügers Archiv 407, 245251.CrossRefGoogle ScholarPubMed
Owen, O. E., Felig, P., Morgan, A. P., Wahren, J. & Cahill, G. F. (1969). Liver and kidney metabolism during prolonged starvation. Journal of Clinical Investigation 48, 574583.CrossRefGoogle ScholarPubMed
Paulussen, R. J. A., Jansen, G. P. M. & Veerkamp, J. H. (1986). Fatty acid-binding capacity of cytosolic proteins of various rat tissues: effect of postnatal development, starvation, sex, clofibrate feeding and light cycle. Biochimica et Biophysica Acta 877, 342349.CrossRefGoogle ScholarPubMed
Pfaller, W. & Rittinger, M. (1980). Quantitative morphology of the rat kidney. International Journal of Biochemistry 12, 1722.CrossRefGoogle ScholarPubMed
Pollock, A. S. (1989). Induction of renal phosphoenolpyruvate carboxykinase mRNA: suppressive effect of glucose. American Journal of Physiology 257, F145F151.Google ScholarPubMed
Richterich, R. W. & Goldstein, L. (1958). Distribution of glutamine metabolizing enzymes and production of urinary ammonia in the mammalian kidney. American Journal of Physiology 195, 316320.CrossRefGoogle ScholarPubMed
Robinson, A. M. & Williamson, D. H. (1980). Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiological Reviews 60, 143187.CrossRefGoogle ScholarPubMed
Robinson, J. & Newsholme, E. A. (1969). The effects of dietary conditions and glycerol concentration on glycerol uptake by rat liver and kidney-cortex slices. Biochemical Journal 112, 449453.CrossRefGoogle ScholarPubMed
Ross, B. D., Epstein, F. & Leaf, A. (1973). Sodium reabsorption in the perfused rat kidney. American Journal of Physiology 225, 11651171.CrossRefGoogle ScholarPubMed
Ross, B. D. & Guder, W. G. (1982). Heterogeneity and compartmentation in the kidney. In Metabolic Compartmentation, pp. 363409 [Sies, H., editor]. London: Academic Press.Google Scholar
Salto, R., Oliver, J., del Mar Sola, M. & Vargas, A. M. (1991). Distribution of pyruvate carboxylase along the rat nephron: An immunological and enzymatic study. Kidney International 39, 11621167.CrossRefGoogle ScholarPubMed
Silbernagl, S. (1980). Tubular reabsorption of L-glutamine studied by free-flow micropuncture and micro-perfusion of rat kidney. International Journal of Biochemistry 12, 916.CrossRefGoogle Scholar
Simpson, D. (1983). Citrate excretion: a window on renal metabolism. American Journal of Physiology 244, F223F234.Google ScholarPubMed
Schmidt, U. & Dubach, U. C. (1976). Acute renal failure in the folate-treated rat: Early metabolic changes in various structures of the nephron. Kidney International 10, S39S45.Google Scholar
Schmidt, U., Marosvari, I. & Dubach, U. C. (1975). Renal metabolism of glucose: anatomical sites of hexokinase activity in the rat nephron. FEBS Letters 53, 2628.CrossRefGoogle ScholarPubMed
Schoolwerth, A. C. & Gesek, F. A. (1990). Intramitochondrial pH and ammonium production in rat and dog kidney cortex. Mineral and Electrolyte Metabolism 16, 264269.Google ScholarPubMed
Schoolwerth, A. C., Nazar, B. L. & LaNoue, K. F. (1978). Glutamate dehydrogenase activation and ammonia formation by rat kidney mitochondria. Journal of Biological Chemistry 253, 61776183.CrossRefGoogle ScholarPubMed
Squires, E. J., Hall, D. E. & Brosnan, J. T. (1976). Arteriovenous differences for amino acids and lactate across kidneys of normal and acidotic rats. Biochemical Journal 160, 125128.CrossRefGoogle ScholarPubMed
Tannenbaum, J., Purkerson, M. L. & Klahr, S. (1983). Effect of unilateral ureteral obstruction on metabolism of renal lipids in the rat. American Journal of Physiology 245, F254F262.Google ScholarPubMed
Thorens, B., Lodish, H. F. & Brown, D. (1990). Differential localization of two glucose transporter isoforms in rat kidney. American Journal of Physiology 259, C286C294.CrossRefGoogle ScholarPubMed
Trimble, M. E. (1980). Uptake and utilization of long chain and medium chain fatty acids by the perfused rat kidney. International Journal of Biochemistry 12, 173176.CrossRefGoogle ScholarPubMed
Trimble, M. E. (1982). Long chain fatty acid transport by the perfused rat kidney. Renal Physiology 5, 136142.Google ScholarPubMed
Trimble, M. E. (1989). Mediated transport of long-chain fatty acids by rat renal basolateral membranes. American Journal of Physiology 257, F539F546.Google ScholarPubMed
Ullrich, K. J. & Papavassiliou, F. (1986). Contraluminal transport of small aliphatic carboxylates in the proximal tubule of the rat kidney in situ. Pflügers Archiv 407, 488492.CrossRefGoogle ScholarPubMed
Underwood, A. H. & Newsholme, E. A. (1967). Control of glycolysis and gluconeogenesis in rat kidney cortex slices. Biochemical Journal 104, 300305.CrossRefGoogle ScholarPubMed
Watford, M., Vinay, P., Lemieux, G. & Gougoux, A. (1980). The regulation of glucose and of pyruvate formation from glutamine and citric-acid-cycle intermediates in the kidney cortex of rats, dogs, rabbits and guinea-pigs. Biochemical Journal 188, 741748.CrossRefGoogle ScholarPubMed
Weidemann, M. J. & Krebs, H. A. (1969). The fuel of respiration of rat kidney cortex. Biochemical Journal 112, 149166.CrossRefGoogle ScholarPubMed
Weinstein, S. W. & Szyjewick, J. (1976). Single nephron function and renal oxygen consumption during rapid volume expansion. American Journal of Physiology 231, 11661172.CrossRefGoogle ScholarPubMed
Windus, D. W., Cohn, D. E. & Heifets, M. (1986). Effect of fasting on citrate transport by brush border membrane of rat kidney. American Journal of Physiology 251, F678F682.Google ScholarPubMed
Wirthensohn, G., Gerl, M. & Guder, W. (1980). Triacylglycerol metabolism in kidney cortex and outer medulla. International Journal of Biochemistry 12, 157161.CrossRefGoogle ScholarPubMed
Wirthensohn, G. & Guder, W. G. (1980). Triacylglycerol metabolism in isolated rat kidney cortex tubules. Biochemical Journal 186, 317324.CrossRefGoogle ScholarPubMed
Wirthensohn, G. & Guder, W. G. (1986). Renal substrate metabolism. Physiological Reviews 66, 469497.CrossRefGoogle ScholarPubMed
Wright, P. A. & Knepper, M. A. (1990 a). Glutamate dehydrogenase activities in microdissected rat nephron segments: effects of acid-base loading. American Journal of Physiology 259, F53F59.Google ScholarPubMed
Wright, P. A. & Knepper, M. A. (1990 b). Phosphate-dependent glutaminase activity in rat renal cortical and medullary tubule segments. American Journal of Physiology 259, F961F970.Google ScholarPubMed