Skip to main content Accessibility help
×
Home

Contents:

Information:

  • Access

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Flavonoid-rich berry-extract treatment influences expression of genes in the copper-uptake pathway in human intestinal Caco-2 cells
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        Flavonoid-rich berry-extract treatment influences expression of genes in the copper-uptake pathway in human intestinal Caco-2 cells
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        Flavonoid-rich berry-extract treatment influences expression of genes in the copper-uptake pathway in human intestinal Caco-2 cells
        Available formats
        ×
Export citation

Berries are a rich dietary source of bioactive polyphenols, including flavonoids, such as anthocyanins(1). Dietary flavonoids are known to chelate Cu2+ and are known to alter the uptake of metal ions in human intestinal Caco-2 cells(2, 3). However, little is known about the effects of dietary polyphenols on the expression of genes involved in the Cu-uptake pathway in the human intestine. The present study investigated the influence of a flavonoid-rich berry-extract on the expression of the following genes which co-ordinate the intestinal uptake of Cu: the cell surface metalloreductase (DCYTB); the Cu importers, divalent metal ion transporter (DMT1) and Cu transporter 1 (CTR1); the intracellular Cu chaperone (HAH1) and metallothionein (MT); the Cu transporting ATPases (ATP7A and ATP7B)(4).

Human intestinal Caco-2 cells, cultured for 19 d, were treated for 16 h with a flavonoid-rich berry-extract (OptiBerry; InterHealth Nutraceuticals, Benicia, CA, USA) at a final concentration of 0.125% (w/v). RNA was isolated for quantitative RT–PCR. All gene expression data were normalised to 18S and GAPDH as housekeeping genes and presented as mean normalised expression ratios ±SEM. Statistical significance was determined by Student's t test with significance indicated at P⩽0.05 (n 12).

Following treatment with the berry extract there were significant decreases in DMT1 (0.73±0.08, P<0.04), CTR1 (0.67±0.06, P<0.01), HAH1 (0.82±0.06, P<0.03) and ATP7B (0.72±0.05, P<0.001) mRNA expression (Fig. 1). The mRNA expression of the other genes did not change significantly in response to the berry-extract treatment.

These results indicate that berry flavonoids influence the expression of components of the Cu-uptake pathway. Studies are in progress to investigate the biological relevance of the observed effects in relation to berry consumption and the bioavailability of dietary Cu.

Fig. 1. Effects of berry-extract treatment on the mRNA expression of DMT1, CTR1, HAH1 and ATP7B involved in the Cu-uptake pathway in intestinal Caco-2 cells.

Data expressed as mean (sem), n 12; *P⩽0.05, **P⩽0.01, ***P⩽0.001.

1.Zafra-Stone, S, Yasmin, T, Bagchi, M et al. (2007) Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol Nutr Food Res 51, 675683.
2.Lekka, Ch E, Ren, J, Meng, S et al. (2009) Structural, electronic, and optical properties of representative Cu-flavonoid complexes. J Phys Chem B 113(18), 64786483.
3.Kuo, SM, Leavitt, PS & Lin, CP (1998) Dietary flavonoids interact with trace metals and affect metallothionein level in human intestinal cells. Biol Trace Elem Res 62(3),135153.
4.Lonnerdal, B (2008) Intestinal regulation of copper homeostasis: a developmental perspective. Am J Clin Nutr 88(3), 846S850S