Skip to main content Accessibility help
×
Home

Contents:

Information:

  • Access

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        The development of metabolite biomarkers of energy-dense nutrient-poor foods and takeaway (fast) food dietary patterns
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        The development of metabolite biomarkers of energy-dense nutrient-poor foods and takeaway (fast) food dietary patterns
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        The development of metabolite biomarkers of energy-dense nutrient-poor foods and takeaway (fast) food dietary patterns
        Available formats
        ×
Export citation

An unbalanced diet and physical inactivity are risk factors for many chronic health conditions and an increase in obesity prevalence, which imposes a huge financial burden on UK healthcare systems. Accurate measurement of habitual food consumption, particularly energy-dense nutrient-poor foods using self-reported dietary assessment tools can be subject to participant bias(1). Recent research has demonstrated that metabolites derived from individual foods present in urine samples provide biomarkers of dietary exposure, the measurement of which could improve the limitations of traditional dietary assessment methodologies. Several reports have described the analysis, in human biofluids, of specific metabolites known to be derived from foods of high public health significance(2, 3), but lesser so for takeaway or fast foods(4).

The current study investigated the dietary patterns of adult takeaway food consumers (n = 151) in Merseyside using a modified version of the EPIC-Norfolk food frequency questionnaire (FFQ)(5) and 3 × 24-hour dietary recalls (24HR). Dietary patterns were identified through principal component analysis (PCA) using both self-assessment tools. Additionally, participants collected spot First Morning Void urine samples after each 24HR. Metabolite fingerprints were created from urines using flow infusion electrospray (FIE) ionisation high resolution (HR) mass spectrometry (MS) and analyzed with machine learning data techniques, including Random forest(3, 4). Ultra High Performance Liquid Chromatography-High Resolution MS (UHPLC-HRMS) and Tandem mass spectrometry (MSn) was used for structural identification of putative biomarkers.

PCA produced three dietary patterns from the FFQ data, these were classified as; 1) ‘Convenience and takeaway’, 2) ‘Prudent’ and 3) ‘English and fast food’ (Fig. 1). Using FIE-HRMS coupled with machine learning we identified urinary biomarkers associated each dietary pattern. UHPLC-HRMS and MSn allowed further structural identification of biomarkers associated with takeaway spices and essential oils. Urine biomarkers indicative of exposure to foods ranging from healthy to unhealthy will be integrated into a diagnostic population screening method in order to objectively measure food exposure and calorie intake.

Fig. 1. Dietary patterns produced using PCA on food frequency questionnaire data.

1.Shim, J-S, Oh, K & Kim, HC (2014) Epidemiol Health 36, e2014009–0.
2.Lloyd, A, Favé, G, Beckmann, M et al. (2011) Am J Clin Nutr 94, 981991.
3.Beckmann, M, Lloyd, A, Halder, S et al. (2013) Proc Nutr Soc 72, 352361.
4.Beckmann, M, Joosen, AM, Clarke, MM et al. (2016) Mol Nutr Food Res 60, 444457.
5.Janssen, H, Davies, I, Richardson, L et al. (2018) Proc Nutr Soc 77, E18.