Skip to main content Accessibility help
×
Home

Contents:

Information:

  • Access

Figures:

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Comparison of three methods for 25-hydroxyvitamin D analysis in umbilical cord serum
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        Comparison of three methods for 25-hydroxyvitamin D analysis in umbilical cord serum
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        Comparison of three methods for 25-hydroxyvitamin D analysis in umbilical cord serum
        Available formats
        ×
Export citation

Variability among estimates of serum 25-hydroxyvitamin D (25OHD) concentrations between different analytical methods and laboratories is well documented( 1 ). There is evidence to suggest that commercial assays produce more unreliable estimates at the higher and lower ends of the distribution of 25OHD concentrations, due to higher limits of detection and cross-reactivity( 2 ). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is regarded as a gold standard reference method when NIST standard reference materials (SRM) are applied( 3 ). As umbilical cord serum 25OHD concentrations are typically lower than adult values, the aim of this study was to compare three commonly used analytical methods to measure total 25OHD concentrations in 86 cord sera that were stored at −80 °C. Total serum 25OHD concentrations were quantified using an enzyme immunoassay (EIA), Immuno Diagnostic Systems (IDS), Boldon, UK, a direct competitive chemiluminescence immunoassay (LIAISON TOTAL Assay), Diasorin Stillwater, USA, and an LC-MS/MS method, which is traceable to the US National Institute for Standards and Technology (NIST) higher order reference measurement procedure( 4 ). Data were compared using the Bland-Altman method.

Both IDS EIA and DiaSorin Liaison correlated strongly with LC-MS/MS (r=0.945 and 0.976, both P<0.001). However, substantial bias was evident in the data from both methods, which ranged from −20% to 176% using IDS EIA and −20% to 193% with DiaSorin Liaison, respectively and the bias was highest at low 25OHD concentrations. The mean difference between IDS EIA and LC-MS/MS was 6.8 nmol/L and between DiaSorin Liaison and LC-MS/MS was 9.9 nmol/L (both P<0.001), see Table. IDS EIA and DiaSorin Liaison over-estimated total 25OHD by 35 and 41%, respectively, see Figure.

Large differences were observed in the concentrations of serum 25OHD in cord samples using both the IDS EIA and DiaSorin Liaison methods compared with LC-MS/MS. Reported levels of serum 25OHD concentrations in umbilical cord samples are not comparable between methods due to the positive bias observed and their validity is questionable, particularly at the low concentrations of 25OHD typically observed in cords. This study re-emphasises the need for international standardisation of serum 25OHD measurements, such as the ongoing Vitamin D Standardisation Program (VDSP)( 5 ).

Supported by the Higher Education Authority Program for Research in Third Level Institutions (PRTLI Cycle 4)

1. Roth, HJ, Schmidt-Gayk, H, Weber, H et al. (2008) Ann Clin Biochem 45, 153159.
2. Lind, C, Chen, J, Byrjalsen, I (1997). Clinical chemistry 43, 943949.
3. Yates, AM, Bowron, A, Calton, L et al. (2008) Clin Chem 54, 20822084.
4. Tai, SS, Bedner, M, Phinney, KW (2010) Anal Chem 82, 19421948.
5. Sempos, CT, Vesper, HW, Phinney, KW et al. (2012) Scand J Clin Lab Invest Suppl 243, 3240.