Skip to main content Accessibility help
×
Home

Contents:

Information:

  • Access

Figures:

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Can pre-feeding of a whey protein affect the glucoregulatory response to an oral glucose tolerance test?
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        Can pre-feeding of a whey protein affect the glucoregulatory response to an oral glucose tolerance test?
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        Can pre-feeding of a whey protein affect the glucoregulatory response to an oral glucose tolerance test?
        Available formats
        ×
Export citation

The stimulating effect of a co-ingestion of carbohydrate and protein and/or amino acids on endogenous insulin release is well known. To this effect, the co-ingestion of protein with carbohydrate is known to improve glucose homeostasis in patients with type-II diabetes(1). In the absence of carbohydrate, the insulinotropic effect of whey protein induces a rise in plasma insulin and lowering of blood glucose within 30 min of ingestion(2). Pre-feeding protein may, therefore, be a worthwhile strategy to improve postprandial glucoregulatory control.

The present paper reports on the effect of pre-feeding whey protein isolate on subsequent glucose response to an oral glucose load. With ethical approval and informed consent eight healthy young subjects (♂, n=4, age 21.8(0.5) years, BMI 22.5(3.7) kg/m2; ♀, n=4, age 23.5(2.4) years, BMI 24.3(2.5) kg/m2) undertook a randomised control trial of two treatments, either protein solution (whey protein isolate (WPI); 0.3 g/kg, 8% (w/v) water) or control (CON; equivalent volume of water), each treatment separated by 7 d. Following an overnight fast subjects were fed either protein or water 30 min prior to ingestion of glucose (75 g; 28% (w/v) in water; OGTT). Blood glucose was measured prior to feeding and every 15 min for 2 h post-glucose ingestion. The area under the curve for blood glucose (AUC0–120) was calculated by trapezoidal integration. The difference in the mean response was analysed by paired Student's t-test.

Peak glucose occurred 30 min following glucose ingestion. Pre-feeding of WPI resulted in 22% lower mean rise in peak glucose (3.50(0.38) v. 2.86(0.17) mmol/l; P=0.076) and a 7% lower mean peak blood glucose (8.25 (0.42) v. 7.66 (0.35) mmol/L; P=0.109) than in the CON trial. However, no difference in effect was observed when blood glucose was calculated as the integrated AUC0–120 (216(32) v. 209(26) mmol/min/l; P=0.429; Figure 1).

Measured by change in the glucose response to an oral glucose tolerance test, the data from this study show that pre-feeding of approximately 25 g of a soluble whey protein timed to coincide with the peak rise in protein-induced endogenous insulin secretion produced a modest reduction in the post-ingestion increase and peak blood glucose concentration, but no change in AUC0–120 for blood glucose, in healthy young subjects. As a nutrient intake, the amount of protein used in this study is low. Further study will confirm whether this pre-feeding glucoregulatory effect follows a similar dose-dependent insulinotropic response to whey protein ingestion(3).

1.Manders, RJ, Praet, SF, Meex, RC et al. (2006) Co-ingestion of a protein hydrolysate with or without additional leucine effectively reduces post-prandial blood glucose excursions in Type 2 diabetic men. J Nutr 136, 12941299.
2.Power, O, Jakeman, P & Hallihan, A (2009) Human insulinotropic response to oral ingestion of native and hydrolysed whey protein. Amino Acids 37, 333339.
3.Claessens, M, Saris, WHM & Baak, MA (2008) Glucagon and insulin responses after ingestion of different amounts of intact and hydrolysed proteins. Br J Nutr 100, 6169.