Skip to main content Accessibility help
×
Home

Can dietary micronutrients influence tissue antioxidant capacity?

  • Malcolm J. Jackson (a1)
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Can dietary micronutrients influence tissue antioxidant capacity?
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Can dietary micronutrients influence tissue antioxidant capacity?
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Can dietary micronutrients influence tissue antioxidant capacity?
      Available formats
      ×

Abstract

  • An abstract is not available for this content so a preview has been provided below. To view the full text please use the links above to select your preferred format.

Copyright

References

Hide All
Arthur, J. R., Nicol, F. & Beckett, G. J. (1993). Selenium deficiency, thyroid hormone metabolism, and thyroid hormone deiodinases. American Journal of Clinical Nutrition 57, 23652395.
Burk, R. F. (1983). Biological activity of selenium. Annual Review of Nutrition 3, 5370.
Gey, K. F., Brubacher, G. B. & Strähelin, H. B. (1987). Plasma levels of antioxidant vitamins in relation to ischaemic heart disease and cancer. American Journal of Clinical Nutrition 45, 13681377.
Golden, M. H. N. (1989). The diagnosis of zinc deficiency. In Zinc in Human Biology, pp. 323334 [Mills, C. F. editor]. London: Springer-Verlag.
Halliwell, B. & Gutteridge, J. M. C. (1989). Free Radicals in Biology and Medicine, 2nd ed. Oxford: Clarendon.
Hill, K. E., Burk, R. F. & Lane, J. M. (1987). Effect of selenium depletion and repletion on plasma glutathione and glutathione dependent enzymes in the rat. Journal of Nutrition 117, 99104.
Jackson, M. J., Coakley, J., Stokes, M., Edwards, R. H. T. & Oster, O. (1989). Selenium metabolism and supplementation in patients with muscular dystrophy. Neurology 39, 655659.
Jackson, M. J., Jones, D. A. & Edwards, R. H. T. (1983). Vitamin E and skeletal muscle. Biology of Vitamin E. Ciba Foundation Symposium no. 101, pp. 224233. Bath: Pitman.
Jackson, M. J., Jones, D. A., Edwards, R. H. T., Coleman, M. & Swainbank, I. G. (1984). Zinc homeostasis in man: studies using a new stable isotope dilution technique. British Journal of Nutrition 51, 199208.
Jackson, M. J. & Lowe, N. M. (1992). Physiological role of zinc. Food Chemistry 43, 233238.
Mills, C. F. (1991). The significance of copper deficiency in human nutrition and health. In Trace Elements in Man and Animals – 7, pp. 5.15.4 [Momcilovic, B. editor]. Zagreb: IMI.
Muller, D. P. R., Lloyd, J. K. & Wolff, O. H. (1983). Vitamin E and neurological function: abeta-lipoproteinaemia and other disorders of fat absorption. In Biology of Vitamin E. Ciba Foundation Symposium no. 101, pp. 106117. Bath: Pitman.
Page, S., McArdle, A., Prescott, N. J., Edwards, R. H. T. & Jackson, M. J. (1993). Stability of vitamin E deficient muscle plasma membrane. Proceedings of the Nutrition Society 52, 82A.
Phoenix, J., Edwards, R. H. T. & Jackson, M. J. (1991). The effect of vitamin E analogues and long hydrocarbon chain compounds in calcium-induced muscle damage: A novel role for tocopherol. Biochimica et Biophysica Acta 1097, 212218.
Quintanilha, A. T. & Packer, L. (1983). Vitamin E, physical exercise and tissue oxidative damage. Biology of Vitamin E. Ciba Foundation Symposium no. 101, pp. 5661. Bath: Pitman.
Turnlund, J. R. (1991). Copper requirements and tolerance in man. In Trace Elements in Man and Animals – 7, pp. 34.134.3 [Momcilovic, B. editor]. Zagreb: IMI.
Wilson, R. L. (1989). Zinc and iron in free radical pathology and cellular control. In Zinc in Human Biology, pp. 147172 [Mills, C. F. editor]. London: Springer-Verlag.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed