Skip to main content Accessibility help
×
Home

Contents:

Information:

  • Access

Figures:

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        B-vitamin status and the MTHFR 677C→T polymorphism as determinants of bone health in older Irish women from the TUDA ageing cohort study
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        B-vitamin status and the MTHFR 677C→T polymorphism as determinants of bone health in older Irish women from the TUDA ageing cohort study
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        B-vitamin status and the MTHFR 677C→T polymorphism as determinants of bone health in older Irish women from the TUDA ageing cohort study
        Available formats
        ×
Export citation

Osteoporosis, an increasingly common skeletal disorder characterised by reduced bone mineral density (BMD) and an increased risk of fragility fracture, is associated with increased morbidity and mortality( 1 ). In recent years, B-vitamins involved in 1-carbon metabolism (i.e. folate, vitaminsB12, B6 and riboflavin) have been linked with bone health outcomes. Findings, however, have been somewhat discordant among studies( 2 ). The aim of this investigation was to examine biomarker status of the B-vitamins and the common 677C→T polymorphism in the gene encoding the folate metabolising enzyme methylenetetrahydrofolatereductase (MTHFR), as determinants of low BMD.

Female participants (n1, 904) recruited to the Trinity Ulster Department of Agriculture (TUDA) ageing cohort study, and with BMD measured by dual energy X-ray absorptiometry scans, were investigated. Low BMD was defined as a combination of osteopenia (a T-Score between –1 and –2.5 SD) and osteoporosis (a T-Score of -2.5 SD or less).B-vitamin biomarker analysis was performed at Trinity College Dublin and the University of Ulster.

An increased risk of low BMD was significantly associated with age (β = 0.062, p < 0.001), physical inactivity (β = 0.483, p = 0.004), weight (β = − 0.056, p < 0.001),and parathyroid hormone (β = 0.011, p = 0.004), but not serum 25-hydroxyvitamin D. Women in the lowest tertile of riboflavin status, or the highest tertile of homocysteine, had a significantly increased risk of low BMD, after adjustment for covariates (Table). The MTHFR 677TT genotype was associated with an increased risk of low BMD. This genotype combined with low status of riboflavin was associated with a 1.9 times increased risk of low BMD, compared to those with high vitamin status and the CC/CT genotypes combined (Table).

Analysis by logistic regression, comparing the lowest tertile of vitamin status (or the highest tertile of homocysteine) to the other tertiles combined, used to determine predictors of low BMD (osteopenia and osteoporosis combined) with adjustment for covariates.

These findings suggest that perturbations of 1-carbon metabolism may have adverse effects on bone health, while optimal B-vitamin status may be protective.

Acknowledgement of Funding: Food for Health Research Initiative of the Irish Department of Agriculture and Health Research Board, with co-funding from the Department for Employment and Learning Northern Ireland under its Cross-Border Research and Development Programme: “Strengthening the all-Island Research Base”.

1. Strom, O, Borgstrom, F, Kanis, JA et al. (2011) ArchOsteoporos 6, 59155.
2. vanWijngaarden, JP, Doets, EL, Szczecinska, A et al. (2013) JNutrMetab 486186.