Skip to main content Accessibility help
×
Home

Biofortification of UK food crops with selenium

Published online by Cambridge University Press:  07 March 2007

Martin R. Broadley
Affiliation:
Plant Sciences Division, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK
Philip J. White
Affiliation:
Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
Rosie J. Bryson
Affiliation:
Velcourt Ltd, NIAB Annex, Huntingdon Road, Cambridge CB3 OLE, UK
Mark C. Meacham
Affiliation:
Plant Sciences Division, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK
Helen C. Bowen
Affiliation:
Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
Sarah E. Johnson
Affiliation:
Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
Malcolm J. Hawkesford
Affiliation:
Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
Steve P. McGrath
Affiliation:
Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
Fang-Jie Zhao
Affiliation:
Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
Neil Breward
Affiliation:
British Geological Survey, Keyworth, Nottingham NG12 5GG, UK
Miles Harriman
Affiliation:
Yara UK, Immingham Dock, Lincolnshire DN40 2NS, UK
Mark Tucker
Affiliation:
Yara UK, Immingham Dock, Lincolnshire DN40 2NS, UK
Corresponding
Rights & Permissions[Opens in a new window]

Abstract

Se is an essential element for animals. In man low dietary Se intakes are associated with health disorders including oxidative stress-related conditions, reduced fertility and immune functions and an increased risk of cancers. Although the reference nutrient intakes for adult females and males in the UK are 60 and 75 μg Se/d respectively, dietary Se intakes in the UK have declined from >60 μg Se/d in the 1970s to 35 μg Se/d in the 1990s, with a concomitant decline in human Se status. This decline in Se intake and status has been attributed primarily to the replacement of milling wheat having high levels of grain Se and grown on high-Se soils in North America with UK-sourced wheat having low levels of grain Se and grown on low-Se soils. An immediate solution to low dietary Se intake and status is to enrich UK-grown food crops using Se fertilisers (agronomic biofortification). Such a strategy has been adopted with success in Finland. It may also be possible to enrich food crops in the longer term by selecting or breeding crop varieties with enhanced Se-accumulation characteristics (genetic biofortification). The present paper will review the potential for biofortification of UK food crops with Se.

Type
Meeting Report
Copyright
Copyright © The Nutrition Society 2006

References

Adams, ML Lombi, E Zhao, F-J, McGrath, SP (2002) Evidence of low selenium concentrations in UK bread-making wheat grain. Journal of the Science of Food and Agriculture 82 11601165.CrossRefGoogle Scholar
Aro, A Alfthan, G Varo, P (1995) Effects of supplementation of fertilizers on human selenium status in Finland Analyst 120 841843.CrossRefGoogle ScholarPubMed
Arthur, JR (2003) Selenium supplementation: does soil supplementation help and why? Proceedings of the Nutrition Society 62 393397.CrossRefGoogle Scholar
Bañuelos, G Terry, N LeDuc, DL Pilon-Smits, EAH Mackey, B (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment Environmental Science and Technology 39 17711777.CrossRefGoogle ScholarPubMed
Bell, PF Parker, DR Page, AL (1992) Contrasting selenate-sulfate interactions in selenium-accumulating and non-accumulating plant species Soil Science Society of America Journal 56 18181824.Google Scholar
Bouis, HE (2003) Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Proceedings of the Nutrition Society 62 403411.CrossRefGoogle ScholarPubMed
Bouis, HE Chassy, BM Ochanda, JO (2003) Genetically modified food crops and their contribution to human nutrition and food quality Trends in Food Science and Technology 14 191209.CrossRefGoogle Scholar
Brookins, DG (1987) Eh-pH Diagrams for Geochemistry. New York: Springer-Verlag.Google Scholar
Cary, EE Allaway, WH (1969) Stability of different forms of selenium applied to low-selenium soils Soil Science Society of America Proceedings 33 571574.CrossRefGoogle Scholar
Cary, EE Allaway, WH (1973) Selenium content of field crops grown on selenite-treated soils Agronomy Journal 65 922925.CrossRefGoogle Scholar
Cary, EE Wieczorek, GA Allaway, WH (1967) Reactions of selenite-selenium added to soils that produce low-selenium forages Soil Science Society of America Proceedings 31 2126.CrossRefGoogle Scholar
Castellano, S Novoselov, SV Kryukov, GV, Lescure, A Blanco, E, Krol, A Gladyshev, VN Guigó, R (2004) Reconsidering the evolution of eukaryotic selenoproteins: a novel nonmammalian family with scattered phylogenetic distribution EMBO Reports 5 7177.CrossRefGoogle ScholarPubMed
Chen, L Yang, F Xu, J, Hu, Y Hu, Q, Zhang, Y Pan, G (2002) Determination of selenium concentration of rice in China and effect of fertilization of selenite and selenate on selenium content of rice. Journal of Agricultural and Food Chemistry 50 51285130.CrossRefGoogle ScholarPubMed
Clark, LC Combs, GF Jr Turnbull, BW Slate, E Alberts, D, Abele, D et al. (1996) The nutritional prevention of cancer with selenium 1983–1993: a randomized clinical trial. Journal of the American Medical Association 276 19571963.CrossRefGoogle Scholar
Clark, LC Dalkin, B Krongrad, A, Combs, GF Jr Turnbull, BW Slate, EH et al. (1998) Decreased incidence of prostate cancer with selenium supplementation: results of a double-blind cancer prevention trial British Journal of Urology 81 730734.CrossRefGoogle ScholarPubMed
Combs, GF (2005) Current evidence and research needs to support a health claim for selenium and cancer prevention. Journal of Nutrition 135 343347.Google ScholarPubMed
Coutts, G Atkinson, D Cooke, S (1990) Application of selenium prills to improve the selenium supply to a grass clover sward Communications in Soil Science and Plant Analysis 21 951963.CrossRefGoogle Scholar
Davies, EB Watkinson, JH (1966) Uptake of native and applied selenium by pasture species I. Uptake of Se by browntop, ryegrass, cocksfoot, and white clover from Atiamuri sand New Zealand Journal of Agricultural Research 9 317327.CrossRefGoogle Scholar
De Gregori, I Lobos, MG Pinochet, H (2002) Selenium and its redox speciation in rainwater from sites of Valparaiso region in Chile, impacted by mining activities of copper ores Water Research 36 115122.CrossRefGoogle Scholar
Dhillon, KS Dhillon, SK (2003) Distribution and management of seleniferous soils Advances in Agronomy 79 119184.CrossRefGoogle Scholar
Dickson, JD (1969) Notes on hair and nail loss after ingesting Sapucaia Nuts (Lecythis elliptica) Economic Botany 23 133134.CrossRefGoogle Scholar
Driscoll, DM Copeland, PR (2003) Mechanism and regulation of selenoprotein synthesis Annual Review of Nutrition 23 1740.CrossRefGoogle ScholarPubMed
Ellis, DR Salt, DE (2003) Plants, selenium and human health Current Opinion in Plant Biology 6 273279.CrossRefGoogle ScholarPubMed
Elrashidi, MA, Adriano, DC & Lindsay, WL (1989) Solubility, speciation and transformation of selenium in soils. In Selenium in Agriculture and the Environment. Soil Science Society of America Special Publication no. 23, pp. 5163 [Jacobs, LW, editor]. Madison, WI: SSSA.Google Scholar
Elrashidi, MA Adriano, DC Workman, SM Lindsay, WL (1987) Chemical-equilibria of selenium in soils – a theoretical development Soil Science 144 141152.CrossRefGoogle Scholar
Eurola, M Ekholm, P Ylinen, M, Koivistoinen, P Varo, P (1989) Effects of selenium fertilization on the selenium content of selected Finnish fruits and vegetables Acta Agriculturae Scandinavica 39 345350.CrossRefGoogle Scholar
Eurola, M Hietaniemi, V Kontturi, M, Tuuri, H Kangas, A, Niskanen, M Saastamoinen, M (2004) Selenium content of Finnish oats in 1997–1999: effect of cultivars and cultivation techniques Agricultural and Food Science 13 4653.CrossRefGoogle Scholar
Eurola, MH Ekholm, PI Ylinen, ME, Koivistoinen, PE Varo, PT (1991) Selenium in Finnish foods after beginning the use of selenate supplemented fertilizers. Journal of the Science of Food and Agriculture 56 5770.CrossRefGoogle Scholar
Feist, LJ Parker, DR (2001) Ecotypic variation in selenium accumulation among populations of Stanleya pinnata New Phytologist 149 6169.CrossRefGoogle Scholar
Fordyce, F (2005) Selenium deficiency and toxicity in the environment. In Essentials of Medical Geology, pp. 373415 [Selinus, O, Alloway, B, Centeno, J, Finkelman, R, Fuge, R, Lindh, U and Smedley, P, editors]. London: Elsevier.Google Scholar
Gissel-Nielsen, G (1977) Control of selenium in plants. Risø Report no. 370, pp. 142. Roskilde, Denmark: Risø National Laboratory.Google Scholar
Gissel-Nielsen, G (1984) Improvement of selenium status of pasture crops Biological Trace Element Research 6 281288.CrossRefGoogle ScholarPubMed
Gissel-Nielsen, G (1986) Comparison of selenium treatments of crops in the field Biological Trace Element Research 10 209213.CrossRefGoogle ScholarPubMed
Gissel-Nielsen, G (1998) Effects of selenium supplementation of field crops. In Environmental Chemistry of Selenium, pp. 99112 [Frankenberger, WT and Engberg, RA, editors]. New York: Dekker.Google Scholar
Gissel-Nielsen, G Bisbjerg, B (1970) The uptake of applied selenium by agricultural plants. 2. The utilization of various selenium compounds Plant and Soil 32 382396.CrossRefGoogle Scholar
Gissel-Nielsen, G Gupta, UC Lamand, M Westermarck, T (1984) Selenium in soils and plants and its importance in livestock and human nutrition Advances in Agronomy 37 397460.CrossRefGoogle Scholar
Gondi, F Panto, G Feher, J, Bogye, G Alfthan, G (1992) Selenium in Hungary – the rock-soil-human system Biological Trace Element Research 35 299306.CrossRefGoogle ScholarPubMed
Graham, RD Welch, RM Bouis, HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps Advances in Agronomy 70 77142.CrossRefGoogle Scholar
Gupta, UC (1995) Effects of Selcote® Ultra and sodium selenate (laboratory versus commercial grade) on selenium concentration in feed crops. Journal of Plant Nutrition 18 16291636.CrossRefGoogle Scholar
Gupta, UC Gupta, SC (2002) Quality of animal and human life as affected by selenium management of soils and crops Communications in Soil Science and Plant Analysis 33 1518.CrossRefGoogle Scholar
Gupta, UC MacLeod JA (1994) Effect of various sources of selenium fertilization on the selenium concentration of feed crops Canadian Journal of Soil Science 74 285290.CrossRefGoogle Scholar
Gupta, UC McRae, KB Winter, KA (1982) Effect of applied selenium on the selenium content of barley and forages and soil selenium depletion rates Canadian Journal of Soil Science 62 145154.CrossRefGoogle Scholar
Gupta, UC Winter, KA (1981) Long-term residual effects of applied selenium on the selenium uptake by plants. Journal of Plant Nutrition 3 493502.CrossRefGoogle Scholar
Gupta, UC Winter, KA (1989) Effect of selenate vs selenite forms of selenium in increasing the selenium concentration in forages and cereals Canadian Journal of Soil Science 69 885889.CrossRefGoogle Scholar
Hanson, B Garifullina, GF Lindblom, SD, Wangeline, A Ackley, A, Kramer, K Norton, AP Lawrence, CB Pilon-Smits, EAH (2003) Selenium accumulation protects Brassica juncea from invertebrate herbivory and fungal infection New Phytologist 159 461469.CrossRefGoogle Scholar
Hanson, B Lindblom, SD Loeffler, ML Pilon-Smits, EAH (2004) Selenium protects plants from phloem-feeding aphids due to both deterrence and toxicity New Phytologist 162 655662.CrossRefGoogle Scholar
Hawkesford, MJ (2003) Transporter gene families in plants: the sulphate transporter gene family-redundancy or specialization? Physiologia Plantarum 117 155165.CrossRefGoogle Scholar
Hawkesford, MJ (2005) Sulphur. In Plant Nutritional Genomics, pp. 87111 [Broadley, MR and White, PJ, editors]. Oxford: Blackwell.Google Scholar
Haygarth, PM Cooke, AI Jones, KC, Harrison, AF Johnston, AE (1993) Long-term change in the biogeochemical cycling of atmospheric selenium: deposition to plants and soil. Journal of Geophysical Research 98 1676916776.CrossRefGoogle Scholar
Ip, C Dong, Y Ganther, HE (2002) New concepts in selenium chemoprevention Cancer and Metastasis Reviews 21 281289.CrossRefGoogle ScholarPubMed
Jackson, MJ Dillon, SA Broome, CS, McArdle, A Hart, CA McArdle, F (2004) Are there functional consequences of a reduction in selenium intake in UK subjects? Proceedings of the Nutrition Society 63 513517.CrossRefGoogle ScholarPubMed
Johnson, CC & Breward, N (2004) G-BASE Geochemical Baseline Survey of the Environment. Commissioned Report CR/04/ 016N. Keyworth, Notts.: British Geological Survey.Google Scholar
Jukola, E Hakkarainen, J Saloniemi, H Sankari, S (1996) Effect of selenium fertilization on selenium in feedstuffs and selenium, vitamin E, and β-carotene concentrations in blood of cattle. Journal of Dairy Science 79 831837.CrossRefGoogle ScholarPubMed
Kannamkumarath, SS Wrobel, K Wuilloud, RG (2005) Studying the distribution pattern of selenium in nut proteins with information obtained from SEC-UV-ICP-MS and CE-ICP-MS Talanta 66 153159.CrossRefGoogle ScholarPubMed
Kantola, M Vartiainen, T (2001) Changes in selenium, zinc, copper and cadmium contents in human milk during the time when selenium has been supplemented to fertilizers in Finland. Journal of Trace Elements in Medicine and Biology 15 1117.CrossRefGoogle Scholar
Kerdel-Vegas, F (1966) The depilatory and cytotoxic actions of 'Coco de Mono' (Lecythis ollaria) and its relationship to chronic selenosis Economic Botany 23 133134.Google Scholar
Kopsell, DA Randle, WM (1997) Short-day onion cultivars differ in bulb selenium and sulfur accumulation which can affect bulb pungency Euphytica 96 385390.CrossRefGoogle Scholar
Kopsell, DA Randle, WM (2001) Genetic variances and selection potential for selenium accumulation in a rapid-cycling Brassica oleracea population. Journal of the American Society for Horticultural Science 126 329335.Google Scholar
Lea, A (2005) A fresh look at bread. Arable Farming 32, Issue no 9, 6 June, 14.Google Scholar
LeDuc, DL Tarun, AS Montes-Bayon, M Meija, J, Malit, MF Wu, CP et al. (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation Plant Physiology 135 377383.CrossRefGoogle ScholarPubMed
Lee, J Masters, DG White, CL, Grace, ND Judson, GJ (1999) Current issues in trace element nutrition of grazing livestock in Australia and New Zealand Australian Journal of Agricultural Research 50 13411364.CrossRefGoogle Scholar
Lu, JX Jiang, C Kaeck, M, Ganther, H Vadhanavikit, S, Ip, C Thompson, H (1995) Dissociation of the genotoxic and growth-inhibitory effects of selenium Biochemical Pharmacology 50 213219.CrossRefGoogle ScholarPubMed
Lyons, G Ortiz-Monasterio, I Stangoulis, J, Graham, R (2005a) Selenium concentration in wheat grain: Is there sufficient genotypic variation to use in breeding Plant and Soil 269 269380.CrossRefGoogle Scholar
Lyons, G Stangoulis, J Graham, R (2003) High-selenium wheat: biofortification for better health Nutrition Research Reviews 16 4560.CrossRefGoogle ScholarPubMed
Lyons, GH Stangoulis, JCR Graham, RD (2004) Exploiting micronutrient interaction to optimize biofortification programs: The case for inclusion of selenium and iodine in the Harvest-Plus program Nutrition Reviews 62 247252.CrossRefGoogle Scholar
Lyons, GH Stangoulis, JCR Graham, RD (2005b) Tolerance of wheat (Triticum aestivum L.) to high soil and solution selenium levels Plant and Soil 270 179188.CrossRefGoogle Scholar
MacLeod, JA Gupta, UC Milburn, P Sanderson, JB (1998) Selenium concentration in plant material, drainage and surface water as influenced by Se applied to barley foliage in a barley-red clover-potato rotation Canadian Journal of Soil Science 78 685688.CrossRefGoogle Scholar
Mäkelä, A Wan Wang, W-C Hamalainen, M Nanto, V, Laihonen, P Kotilainen, H, Meng, LX Mäkelä, P (1995) Environmental effects of nationwide selenium fertilization in Finland Biological Trace Element Research 47 289298.CrossRefGoogle ScholarPubMed
Maruyama-Nakashita, A Inoue, E Watanabe-Takahashi, A Yamaya, T Takahashi, H (2003) Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways Plant Physiology 132 597605.CrossRefGoogle ScholarPubMed
Ministry of Housing and Local Government (1956) Clean Air Act, 1956 – Smoke Control Areas. London: H. M. Stationery Office.Google Scholar
Morton, CM Prance, GT Mori, SA Thorburn, LG (1998) Recircumscription of the Lecythidaceae Taxon 47 817827.CrossRefGoogle Scholar
Murphy, MD Quirke, WA (1997) The effect of sulphur/nitrogen/selenium interactions on herbage yield and quality Irish Journal of Agricultural and Food Research 36 3138.Google Scholar
Peterson, PJ Butler, GW (1962) Uptake and assimilation of selenite by higher plants Australian Journal of Biological Sciences 15 126146.Google Scholar
Pezzarossa, B Piccotino, D Shennan, C Malorgio, F (1999) Uptake and distribution of selenium in tomato plants as affected by genotype and sulphate supply. Journal of Plant Nutrition 22 16131635.CrossRefGoogle Scholar
Pickering, IJ Prince, RC Salt, DE, George, GN (2000) Quantitative, chemically specific imaging of selenium transformation in plants Proceedings of the National Academy of Sciences USA 97 1071710722.CrossRefGoogle ScholarPubMed
Pickering, IJ Wright, C Bubner, B, Ellis, D Persans, MW Yu, EY, George, GN Prince, RC, Salt, DE (2003) Chemical form and distribution of selenium and sulfur in the selenium hyperaccumulator Astragalus bisulcatus Plant Physiology 131 14601467.CrossRefGoogle ScholarPubMed
Pilon, M Owen, JD Garifullina, GF, Kurihara, T Mihara, H, Esaki, N Pilon-Smits, EAH (2003) Enhanced selenium tolerance and accumulation in transgenic Arabidopsis expressing a mouse selenocysteine lyase Plant Physiology 131 12501257.CrossRefGoogle ScholarPubMed
Pilon-Smits, EAH Hwang, S Lytle, CM Zhu, Y Tai, JC Bravo, RC, Chen, Y Leustek, T Terry, N (1999) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance Plant Physiology 119 123132.CrossRefGoogle ScholarPubMed
Rayman, MP (1997) Dietary selenium: time to act British Medical Journal 314 387388.CrossRefGoogle Scholar
Rayman, MP (2000) The importance of selenium to human health Lancet 356 233241.CrossRefGoogle ScholarPubMed
Rayman, MP (2002) The argument for increasing selenium intake Proceedings of the Nutrition Society 61 203215.CrossRefGoogle ScholarPubMed
Rayman, MP (2004) The use of high-selenium yeast to raise selenium status: how does it measure up? British Journal of Nutrition 92 557573.CrossRefGoogle Scholar
Rimmer, DL Shiel, RS Syers, JK, Wilkinson, M (1990) Effects of soil application of selenium on pasture composition. Journal of the Science of Food and Agriculture 51 407410.CrossRefGoogle Scholar
Rosenfeld, I & Beath, OA (1964) Selenium: Geobotany, Biochemistry, Toxicity, and Nutrition. New York: Academic Press.Google Scholar
Schwarz, K Foltz, CM (1957) Selenium as an integral part of factor-3 against dietary necrotic liver degeneration. Journal of the American Chemical Society 79 32923293.CrossRefGoogle Scholar
Shand, C Coutts, G Duff, E, Atkinson, D (1992) Soil selenium treatments to ameliorate selenium deficiency in herbage. Journal of the Science of Food and Agriculture 59 2735.CrossRefGoogle Scholar
Shennan, C Schachtman, DP Cramer, GR (1990) Variation in [75 Se]selenate uptake and partitioning among tomato cultivars and wild species New Phytologist 115 523530.CrossRefGoogle Scholar
Shibagaki, N Rose, A McDermott, JP Fujiwara, T Hayashi, H, Yoneyama, T Davies, JP (2002) Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2 , a sulfate transporter required for efficient transport of sulfate into roots Plant Journal 29 475486.CrossRefGoogle ScholarPubMed
Singh, BR (1994) Effect of selenium-enriched calcium nitrate, top-dressed at different growth-stages, on the selenium concentration in wheat Fertilizer Research 38 199203.CrossRefGoogle Scholar
Spears, DA Manzanares-Papayanopoulos, LI Booth, CA (1999) The distribution and origin of trace elements in a UK coal; the importance of pyrite Fuel 78 16711677.CrossRefGoogle Scholar
Stephen, RC Saville, DJ Watkinson, JH (1989) The effects of sodium selenate applications on growth and selenium concentration in wheat New Zealand Journal of Crop and Horticultural Science 17 229237.CrossRefGoogle Scholar
Takahashi, H Watanabe-Takahashi, A Smith, FW Blake-Kalff, M Hawkesford, MJ Saito, K (2000) The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant Journal 23 171182.CrossRefGoogle ScholarPubMed
Terry, N Zayed, AM de Souza, MP Tarun, AS (2000) Selenium in higher plants Annual Review of Plant Physiology and Plant Molecular Biology 51 401432.CrossRefGoogle ScholarPubMed
Thomson, CD Robinson, MF (1996) The changing selenium status of New Zealand residents European Journal of Clinical Nutrition 50 107114.Google ScholarPubMed
Valle, G McDowell, LR Prichard, DL Chenoweth, PJ, Wright, DL Martin, FG, Kunkle, WE Wilkinson, NS (2002) Selenium concentration of fescue and bahia grasses after applying a selenium fertilizer Communications in Soil Science and Plant Analysis 33 14611472.CrossRefGoogle Scholar
van Dorst, SH Peterson, PJ (1984) Selenium speciation in the soil solution and its relevance to plant uptake. Journal of the Science of Food and Agriculture 35 601605.CrossRefGoogle Scholar
Varo, P Alfthan, G Ekholm, P, Aro, A Koivistoinen, P (1988) Selenium intake and serum selenium in Finland – effects of soil fertilization with selenium American Journal of Clinical Nutrition 48 324329.Google ScholarPubMed
Venäläinen, E-R Hirvi, T Hirn, J (1997) Effect of selenium supplementation on the selenium content in muscle and liver of Finnish pigs and cattle. Journal of Agricultural and Food Chemistry 45 810813.CrossRefGoogle Scholar
Vonderheide, AP Wrobel, K Kannamkumarath, SS B'Hymer, C Montes-Bayón, M de León, CP Caruso, JA (2002) Characterization of selenium species in Brazil nuts by HPLC-ICP-MS and ES-MS. Journal of Agricultural and Food Chemistry 50 57225728.CrossRefGoogle ScholarPubMed
Vreugdenhil, D, Aarts, MGM & Koornneef, M (2005) Exploring natural genetic variation to improve plant nutrient content. In Plant Nutritional Genomics, pp. 201219 [Broadley, MR and White, PJ, editors]. Oxford: Blackwell.Google Scholar
Wang, D Alfthan, G Aro, A, Lahermo, P Väänänen, P (1994) The impact of selenium fertilisation on the distribution of selenium in rivers in Finland Agriculture, Ecosystems and Environment 50 133149.CrossRefGoogle Scholar
Wang, D Alfthan, G Aro, A, Mäkelä, A Knuuttila, S Hammar, T (1995) The impact of selenium supplemented fertilization on selenium in lake ecosystems in Finland Agriculture, Ecosystems and Environment 54 137148.CrossRefGoogle Scholar
Wang, W-C Mäkelä, A-L Näntö, V Mäkelä, P Lagström, H (1998) The serum selenium concentrations in children and young adults: a long-term study during the Finnish selenium fertilization programme European Journal of Clinical Nutrition 52 529535.CrossRefGoogle Scholar
Watkinson, JH (1981) Changes of blood selenium in New Zealand adults with time and importation of Australian wheat American Journal of Clinical Nutrition 34 936942.Google ScholarPubMed
Watkinson, JH (1983) Prevention of selenium deficiency in grazing animals by annual topdressing of pasture with sodium selenate New Zealand Veterinary Journal 31 7885.CrossRefGoogle ScholarPubMed
Watkinson, JH Davies, EB (1967) Uptake of native and applied selenium by pasture species. 4. Relative uptake through foliage and roots by white clover and browntop. Distribution of selenium in white clover New Zealand Journal of Agricultural Research 10 122131.CrossRefGoogle Scholar
Whanger, PD (2004) Selenium and its relationship to cancer: an update British Journal of Nutrition 91 1128.CrossRefGoogle ScholarPubMed
Whelan, BR (1989) Uptake of selenite fertilizer by subterranean clover pasture in Western Australia Australian Journal of Experimental Agriculture 29 517522.CrossRefGoogle Scholar
Whelan, BR Barrow, NJ Peter, DW (1994a) Selenium fertilizers for pastures grazed by sheep. 2. Wool and liveweight responses to selenium Australian Journal of Agricultural Research 45 877887.CrossRefGoogle Scholar
Whelan, BR Peter, DW Barrow, NJ (1994b) Selenium fertilizers for pastures grazed by sheep. 1. Selenium concentrations in whole-blood and plasma Australian Journal of Agricultural Research 45 863875.CrossRefGoogle Scholar
White, PJ Bowen, HC Parmaguru, P Fritz, M, Spracklen, WP Spiby, RE et al. (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. Journal of Experimental Botany 55 19271937.CrossRefGoogle ScholarPubMed
White, PJ Broadley, MR (2005) Historical variation in the mineral composition of edible horticultural products. Journal of Horticultural Science and Biotechnology 80 660667.CrossRefGoogle Scholar
Wichtel, JJ (1998) A review of selenium deficiency in grazing ruminants. part 1: New roles for selenium in ruminant metabolism New Zealand Veterinary Journal 46 4752.CrossRefGoogle ScholarPubMed
Wissuwa, M (2005) Mapping nutritional traits in crop plants. In Plant Nutritional Genomics, pp. 220241 [Broadley, MR and White, PJ, editors]. Oxford: Blackwell.Google Scholar
Yang, FM Chen, LC Hu, QH Pan, GX (2003) Effect of the application of selenium on selenium content of soybean and its products Biological Trace Element Research 93 249256.CrossRefGoogle ScholarPubMed
Yläranta, T (1984a) Raising the selenium content of spring wheat and barley using selenite and selenate Annales Agriculturae Fenniae 23 7584.Google Scholar
Yläranta, T (1984b) Effect of selenium fertilization and foliar spraying at different growth-stages on the selenium content of spring wheat and barley Annales Agriculturae Fenniae 23 8595.Google Scholar
Yläranta, T (1984c) Effect of selenite and selenate fertilization and foliar spraying on selenium content of timothy grass Annales Agriculturae Fenniae 23 96108.Google Scholar
Yoshimoto, N Takahashi, H Smith, FW Yamaya, T Saito, K (2002) Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots Plant Journal 29 465473.CrossRefGoogle ScholarPubMed
Zhang, Y Pan, G Chen, J Hu, Q (2003) Uptake and transport of selenite and selenate by soybean seedlings of two genotypes Plant and Soil 253 437443.CrossRefGoogle Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 3
Total number of PDF views: 1426 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 16th January 2021. This data will be updated every 24 hours.

Access
Hostname: page-component-77fc7d77f9-g622z Total loading time: 0.57 Render date: 2021-01-16T16:03:14.545Z Query parameters: { "hasAccess": "1", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sat Jan 16 2021 16:00:00 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Biofortification of UK food crops with selenium
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Biofortification of UK food crops with selenium
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Biofortification of UK food crops with selenium
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *