Skip to main content Accessibility help
×
Home

Bio-Brick - Development of Sustainable and Cost Effective Building Material

  • Priyabrata Rautray (a1), Avik Roy (a2), Deepak John Mathew (a1) and Boris Eisenbart (a3)

Abstract

Building construction is one of the fastest growing industries in India and it puts a huge burden on its limited natural resources. Fired clay bricks are one of the major constituent materials for the construction industry and it produces a huge amount of greenhouse gases. This research tries to highlight the use of alternative materials and how they can be modulated to suit the Indian construction industry. Bio-brick or agro-waste based brick is one such material that has the potential to be a sustainable and cost-effective solution. It acts as good heat and sound insulator and at the same time has overall negative carbon footprint. Additionally, it also acts as a deterrent to stubble burning, prevalent in northern India which causes severe air pollution. Due to its low density, it reduces dead load in high rise structures, thereby making RCC construction more economical. The study also highlights the use of Bio-brick in various areas of a structure. Another important objective of this research is to inspire and motivate architects, designers, researchers and builders to encourage and support the development of such sustainable and eco-sensitive material in construction industry.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Bio-Brick - Development of Sustainable and Cost Effective Building Material
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Bio-Brick - Development of Sustainable and Cost Effective Building Material
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Bio-Brick - Development of Sustainable and Cost Effective Building Material
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.

Corresponding author

Contact: Rautray, Priyabrata IIT Hyderabad Design, India md17resch11001@iith.ac.in

References

Hide All
Armstrong, L. (2015), “Building a sustainable future: The hempcrete revolution”, Www.Cannabusiness.Com, available at: http://www.cannabusiness.com/news/science-technology/building-a-sustainable-future-the-hempcrete-revolution/ (accessed 4 August 2018).
Arrigoni, A., Pelosato, R., Melià, P., Ruggieri, G., Sabbadini, S. and Dotelli, G. (2017), “Life cycle assessment of natural building materials: the role of carbonation, mixture components and transport in the environmental impacts of hempcrete blocks”, Journal of Cleaner Production, Elsevier Ltd, Vol. 149 No. October, pp. 10511061.
Asdrubali, F., D'Alessandro, F. and Schiavoni, S. (2015), “A review of unconventional sustainable building insulation materials”, Sustainable Materials and Technologies, Elsevier B.V., Vol. 4, pp. 117.
Aswale, S. (2015), “Brick making in india – history”, International Journal of Financial Services Management, Vol. 4, available at: https://doi.org/https://www.researchgate.net/publication/295387059_BRICK_MAKING_IN_INDIA_-_HISTORY.
Awasthi, A., Singh, N., Mittal, S., Gupta, P.K. and Agarwal, R. (2010), “Effects of agriculture crop residue burning on children and young on PFTs in North West India”, Science of the Total Environment, Elsevier B.V., Vol. 408 No. 20, pp. 44404445.
Baig, M. (2010), “Biomass: Turning agricultural waste to green power in India”, Www.Abccarbon.Com, available at: http://abccarbon.com/biomass-turning-agricultural-waste-to-green-power-in-india/ (accessed 20 October 2018).
Banerjee, S. (2015), “Brick kilns contribute about 9 per cent of total black carbon emissions in India”, Cseindia.Org, available at: http://www.cseindia.org/brick-kilns-contribute-about-9-per-cent-of-total-black-carbon-emissions-in-india-5713.
El-Turki, A., Ball, R.J. and Allen, G.C. (2007), “The influence of relative humidity on structural and chemical changes during carbonation of hydraulic lime”, Cement and Concrete Research, Vol. 37 No. 8, pp. 12331240.
Gadling, P. and Varma, M.B. (2016), “Comparative study on fly ash bricks and normal clay bricks comparative study on fly ash bricks and normal clay bricks”, No. January 2016, pp. 59.
Hammond, G.P. and Jones, C.I. (2008), “Embodied energy and carbon in construction materials”, Proceedings of the Institution of Civil Engineers - Energy, Vol. 161 No. 2, pp. 8798.
Ip, K. and Miller, A. (2012), “Life cycle greenhouse gas emissions of hemp-lime wall constructions in the UK”, Resources, Conservation and Recycling, Elsevier B.V., Vol. 69, pp. 19.
Jain, N., Bhatia, A. and Pathak, H. (2014), “Emission of air pollutants from crop residue burning in India”, Aerosol and Air Quality Research, Vol. 14 No. 1, pp. 422430.
Kulkarni, N.G. and Rao, A.B. (2016), “Carbon footprint of solid clay bricks fired in clamps of India”, Journal of Cleaner Production, Elsevier Ltd, Vol. 135, pp. 13961406.
Loganathan, S., Srinath, P., Kumaraswamy, M., Kalidindi, S. and Varghese, K. (2017), “Identifying and addressing critical issues in the Indian construction industry: Perspectives of large building construction clients”, Journal of Construction in Developing Countries, Vol. 22, pp. 121144.
Madurwar, M. V, Ralegaonkar, R. V and Mandavgane, S.A. (2013), “Application of agro-waste for sustainable construction materials: A review”, Construction and Building Materials, Elsevier, Vol. 38, pp. 872878.
Magwood, C. (2017), “Introduction to natural hempcrete construction methods”, GreenHome Institute, available at: https://www.youtube.com/watch?v=yIldL6QRtLo (accessed 4 May 2018).
Meyer, C. (2009), “The greening of the concrete industry”, Cement and Concrete Composites, Elsevier Ltd, Vol. 31 No. 8, pp. 601605.
Morris, A.S., Udayan Dhavalikar, V.A.S. (2016), “Examination of Affordable Housing Policies in India”.
Oyenuga, A.A., Bhamidimarri, R. and Researcher, P.D. (2017), “Upcycling ideas for sustainable construction and demolition waste management: Challenges, opportunities and boundaries”, International Journal of Innovative Research in Science, Engineering and Technology (An ISO, Vol. 6 No. 3, available at:https://doi.org/10.15680/IJIRSET.2017.0603187.
De Pandit, S. (2017), “The role of the pradhan mantri awas yojana (urban), 2015 in financial inclusion in India”, International Journal of Recent Scientific Research, Vol. 8 No. 8, pp. 1895918962.
PHFI and CEH. (2017), “Air pollution and health in india : a review of the current evidence and opportunities for the future”, available at: https://www.ceh.org.in/wp-content/uploads/2017/10/Air-Pollution-and-Health-in-India.pdf.
Prétot, S., Collet, F. and Garnier, C. (2014), “Life cycle assessment of a hemp concrete wall: Impact of thickness and coating”, Building and Environment, Elsevier, Vol. 72, pp. 223231.
Satpathy, I., Malik, J.K., Arora, N., Kapur, D.S., Saluja, S., Bhattacharjya, S. and Sekhar, A.R. et al. (2016), “Material consumption patterns in India”, p. 24.
Saviour, M.N. (2012), “Environmental Impact of Soil and Sand Mining: a Review”, International Journal of Science, Environment and Technology, Vol. 1 No. 3, pp. 125134 Review.
Singh, V.K. (2017), “Alternative utilization of crop residues: Tackling negative impacts of burning in India”, Krishijagran.Com, available at: https://krishijagran.com/featured/alternative-utilization-of-crop-residues-tackling-negative-impacts-of-burning-in-india (accessed 27 October 2018).
Singh, Y. and Sidhu, H.S. (2014), “Management of cereal crop residues for sustainable rice-wheat production system in the indo-gangetic plains of India”, Proceedings of the Indian National Science Academy, Vol. 80 No. 1, pp. 95114.
Son, N.K., Toan, N.P.A., Dung, T.T.T. and Huynh, N.N.T. (2017), “Investigation of agro-concrete using by-products of rice husk in mekong delta of vietnam”, Procedia Engineering, Vol. 171, pp. 725733.
UN. (1987), “United nations: Our common future”, available at: https://doi/org/10.2307/2621529
Walker, R. and Pavía, S. (2014), “Moisture transfer and thermal properties of hemp-lime concretes”, Construction and Building Materials, Elsevier Ltd, Vol. 64, pp. 270276.

Keywords

Bio-Brick - Development of Sustainable and Cost Effective Building Material

  • Priyabrata Rautray (a1), Avik Roy (a2), Deepak John Mathew (a1) and Boris Eisenbart (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed