Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-17T21:42:25.487Z Has data issue: false hasContentIssue false

X-rays from Radio Millisecond Pulsars

Published online by Cambridge University Press:  04 June 2018

Slavko Bogdanov*
Affiliation:
Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027, USA email: slavko@astro.columbia.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Galactic population of rotation-powered (aka radio) millisecond pulsars (MSPs) exhibits diverse X-ray properties. Energetic MSPs show pulsed non-thermal radiation from their magnetospheres. Eclipsing binary MSPs predominantly have X-ray emission from a pulsar wind driven intra-binary shock. Typical radio MSPs emit X-rays from their heated magnetic polar caps. These thermally emitting MSPs offer the opportunity to place interesting constraints on the long sought after dense matter equation of state, making them important targets of investigation of the recently deployed Neutron Star Interior Composition Explorer (NICER) X-ray mission.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Arons, J., & Tavani, M., 1993, ApJ, 403, 249Google Scholar
Arzoumanian, Z., Gendreau, K. C., Baker, C. L., et al., 2014, SPIE, 9144E, 20Google Scholar
Becker, W., & Trümper, J., 1993, Nature, 365, 528CrossRefGoogle Scholar
Becker, W., & Trümper, J., 1999, A&A, 341, 803Google Scholar
Bhattacharya, S., 2017, MNRAS, in press (arXiv: 1709.01807)Google Scholar
Bogdanov, S., Esposito, P., Crawford, F. III, et al., 2014, ApJ, 781, 6Google Scholar
Bogdanov, S., & Grindlay, J. E., 2009, ApJ, 703, 1557Google Scholar
Bogdanov, S., Grindlay, J. E., & van den Berg, M., 2005, ApJ, 630, 1029Google Scholar
Bogdanov, S., van den Berg, M., Servillat, M., et al., 2011, ApJ, 730, 81Google Scholar
Bogdanov, S., Archibald, A. M., Hessels, J. W. T., et al., 2011, ApJ, 742, 97Google Scholar
Bogdanov, S., van den Berg, M., Heinke, C. O., et al., 2010, ApJ, 709, 241Google Scholar
Bogdanov, S., 2008, PhD Thesis, Harvard UniversityGoogle Scholar
Bogdanov, S., 2013, ApJ, 762, 96Google Scholar
Elsner, R. F., Heinke, C. O., Cohn, H. N., et al., 2008, ApJ, 687, 1019Google Scholar
Forestell, L. M., Heinke, C. O., Cohn, H. N., et al., 2014, MNRAS, 441, 757Google Scholar
Gentile, P. A., Roberts, M. S. E., & McLaughlin, M. A., 2014, ApJ, 783, 69CrossRefGoogle Scholar
Gotthelf, E. V., & Bogdanov, S., 2017, ApJ, 845, 159Google Scholar
Harding, A. K., & Muslimov, A. G., 2002, 568, 862CrossRefGoogle Scholar
Hebeler, K., Lattimer, J. M., Pethick, C. J., & Schwenk, A., 2013, ApJ, 773, 11Google Scholar
Kuiper, L., Hermsen, W., Stappers, B., 2004, AdSpR, 33, 507Google Scholar
Miller, M. C., & Lamb, F. K., 2015, ApJ, 808, 31Google Scholar
Özel, F., Psaltis, D., Arzoumanian, Z., & Morsink, S, Bauöck, M., 2016, ApJ, 832, 92Google Scholar
Pavlov, G. G., Kargaltsev, O., Garmire, G. P., Wolszczan, A., 2007, ApJ, 664, 1072Google Scholar
Ransom, S. M., Stairs, I. H., Backer, D. C., et al., 2004, ApJ, 604, 328Google Scholar
Romani, R. W., & Sanchez, N., 2016, ApJ, 826, 7Google Scholar
Spiewak, R., Kaplan, D. L., Archibald, A., et al., 2016, ApJ, 822, 37Google Scholar
Stappers, B. W., Gaensler, B. M., Kaspi, V. M., et al., 2003, Science, 299, 1372Google Scholar
Swiggum, J. K., Kaplan, D. L., McLaughlin, M. A., et al., 2017, ApJ, 847, 25CrossRefGoogle Scholar
Tendulkar, S. P., Yang, C., An, H., et al., 2014, ApJ, 791, 77Google Scholar
Wadiasingh, Z., Harding, A. K., Venter, C., Böttcher, M., & Baring, M. G., 2017, ApJ, 839, 80Google Scholar
Webb, N. A., Olive, J. -F., & Barret, D., 2004, A&A, 417, 181Google Scholar
Zavlin, V. E., & Pavlov, G. G., 1998, A&A, 329, 583Google Scholar
Zavlin, V. E., 2006, ApJ, 638, 951Google Scholar
Zavlin, V. E., 2007, Ap&SS, 308, 297Google Scholar