Skip to main content Accessibility help
×
Home

What Disc Brightness Profiles Can Tell us about Galaxy Evolution

  • John Beckman (a1) (a2) (a3), Peter Erwin (a4) and Leonel Gutiérrez (a5)

Abstract

Azimuthally averaged surface brightness profiles of disc galaxies provide a most useful practical classification scheme which gives insights into their evolution. Freeman (1970) first classified disc profiles into Type I, with a single exponential decline in surface brightness, and Type II, having a split exponential profile, whose inner radial portion is shallower than its outer section. Van der Kruit & and Searle, (1981) drew attention to sharply truncated profiles of outer discs observed edge-on, but more recently Pohlen et al. (2004) showed that if these same galaxies were observed face-on their profiles would be of Type II. Finally in Erwin, Beckman and Pohlen (2005) we found a significant fraction of profiles with inner portion steeper than the outer portion, which we termed “antitruncations“ or Type III profiles. In Erwin, Pohlen and Beckman (2008), we produced a refined classification, taking into account those Type II's produced by dynamical effects at the outer Lindblad resonance, and those Type III's caused by the presence of an outer stellar halo. In Gutiérrez et al. (2011) we showed the distribution of the three main profile types along the Hubble sequence. In early type discs Types I and III predominate, while in late types, Sc and later, Type II predominates.

The evolution of Type II's over cosmic time was studied by Azzollini et al. (2008a, 2008b) who obtained four key results: (a) between z = 1 and z = 0 the break radius between the inner (shallower) and outer (steeper) profile has increased systematically, by a factor 1.3; (b) the inner profile has steepened while the outer profile is shallower at lower z; (c) the extrapolated central surface brightness has fallen by over two magnitudes; (d) the discs in the full redshift interval are always bluest at the break radius. While this behaviour can be qualitatively explained via evolutionary models including stellar migration plus gas infall, such as that by Roskar et al. (2008), and while Type III profiles may have a qualitative explanation via mergers and/or accretion, the widespread existence of Type I's is still a major conceptual challenge.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      What Disc Brightness Profiles Can Tell us about Galaxy Evolution
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      What Disc Brightness Profiles Can Tell us about Galaxy Evolution
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      What Disc Brightness Profiles Can Tell us about Galaxy Evolution
      Available formats
      ×

Copyright

References

Hide All
Azzollini, R., Trujillo, I., & Beckman, J. E. 2008a, ApJ. Letters 679, L69
Azzollini, R., Trujillo, I. & Beckman, J. E. 2008b, ApJ 684, 1026
Erwin, P. E., Beckman, J. E., & Pohlen, M. 2005, ApJ. Letters 626, L81
Erwin, J. E., Pohlen, M., & Beckman, J. E. 2008, AJ 135, 20
Freeman, K. C. 1970, ApJ 160, 767
Van der Kruit, P. & Searle, L. 1981 A&A 95, 105
Gutiérrez, L., Erwin, P., Aladro, R., & Beckman, J. E. 2011, AJ 142, 145
Pohlen, M., Beckman, J. E., et al. 2004, in: Block, D., et al. (eds.), ASSL, Lecture Notes in Physics (Kluwer, Dordrecht), vol. 317, p. 713
Roskar, R. & Debattista, P. 2008, ApJ. Letters 675, L65
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed