Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-22T06:05:54.955Z Has data issue: false hasContentIssue false

What can ISM and non-photospheric highly ionised lines in white dwarf spectra reveal about the β CMa tunnel?

Published online by Cambridge University Press:  09 October 2020

Nicolle L. Finch
Affiliation:
Physics and Astronomy Department, University of Leicester, LE1 7RH, Leicester, UK email: nlf7@le.ac.uk
S. P. Preval
Affiliation:
Physics and Astronomy Department, University of Leicester, LE1 7RH, Leicester, UK
M. A. Barstow
Affiliation:
Physics and Astronomy Department, University of Leicester, LE1 7RH, Leicester, UK
S. L. Casewell
Affiliation:
Physics and Astronomy Department, University of Leicester, LE1 7RH, Leicester, UK
T. Ayres
Affiliation:
Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, Boulder, CO80309, USA
B. Welsh
Affiliation:
Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, CA94720, USA
M. Bainbridge
Affiliation:
Physics and Astronomy Department, University of Leicester, LE1 7RH, Leicester, UK
N. Reindl
Affiliation:
Institut für Physik und Astronomie, Universitätsstandort Golm, Haus 28, Karl-Liebknecht-Str. 24/25, 14467 Potsdam, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

White dwarfs are useful objects with which to study the local interstellar medium (ISM). High ionisation state absorption features that cannot be attributed to the photosphere or the ISM have been observed along the line-of-sight to a number of white dwarf stars. Suggested origins of these lines include ionisation from past supernovae, stellar winds, circumstellar disks, photoionisation from nearby hot stars or also from the white dwarf itself. In this study we consider the origin of these non-photospheric highly ionised lines in two stars towards a rarefied region of the galaxy known as the extended β CMa Tunnel. We present preliminary results from our analysis of the first of these two stars.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Arnaud, K. A. 1996, ASP-CS, 101, 17Google Scholar
Dobbie, P. D., Pinfield, D. J., Napiwotzki, R., Hambly, N. C., Burleigh, M. R., Barstow, M. A., Jameson, R. F., & Hubeny, I. 2004, MNRAS (Letters), 355, L39CrossRefGoogle Scholar
Dupin, O. & Gry, C. 1998, A&A 335, 661Google Scholar
Fuchs, B., Breitschwerdt, D., de Avillez, M. A., Dettbarn, C., & Flynn, C. 2006, MNRAS 373, 993CrossRefGoogle Scholar
Lallement, R., Vergely, J.-L., Valette, B., Puspitarini, L., Eyer, L., & Casagrande, L. 2014, A&A, 561, A91Google Scholar
Maíz-Apellániz, J. 2001, ApJ (Letters), 560, L83CrossRefGoogle Scholar
Preval, S. P., Barstow, M. A., Bainbridge, M., Reindl, N., Ayres, T., Holberg, J. B., Barrow, J. D., Lee, C.-C., Webb, J. K., & Hu, J. 2019 MNRAS, 487, 3470CrossRefGoogle Scholar
Redfield, S. & Linsky, J. L. 2008, ApJ, 673, 283CrossRefGoogle Scholar
Riley, A. et al. 2019, “STIS Instrument Handbook” Version 18.0, (Baltimore: STScI)Google Scholar
Welsh, B. Y. 1991, ApJ, 373, 556CrossRefGoogle Scholar
Wenger, M. et al. 2000, A&AS, 143, 9Google Scholar