Skip to main content Accessibility help
×
Home

Unraveling the chemical history of the Solar System as recorded in extraterrestrial organic matter

  • George D. Cody (a1), Conel M. O'D. Alexander (a2), A. L. David Kilcoyne (a3) and Hikaru Yabuta (a1)

Abstract

We have initiated an extensive program of molecular analysis of extraterrestrial organic matter isolated from a broad range of meteorites (spanning multiple classes, groups, and petrologic types), including recent molecular spectroscopic analyses of the organic matter in the Comet 81P/Wild 2 samples. The results of these analyses clearly reveal the signature of multiple reaction pathways that transformed extraterrestrial organic matter away from its primitive roots. The most significant molecular transformation occurred in the post-accretionary phase of the parent body. However, each of the various chemical transformation trajectories point unambiguously back to a common primitive origin. Applying a wide range of spectroscopic techniques we find that the primitive organic precursor is striking in its chemical complexity exhibiting a broad array of oxygen- and nitrogen-bearing functional groups. The π-bonded carbon exists as predominately highly substituted single ring aromatics, there exists no evidence for abundant, large, polycyclic aromatic hydrocarbons (PAHs). We find that the molecular structure of primitive extraterrestrial organics is consistent with synthesis from small reactive molecules, e. g. formaldehyde, whose random condensation and subsequent rearrangement chemistry at low temperatures leads to a highly cross-linked macromolecule.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Unraveling the chemical history of the Solar System as recorded in extraterrestrial organic matter
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Unraveling the chemical history of the Solar System as recorded in extraterrestrial organic matter
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Unraveling the chemical history of the Solar System as recorded in extraterrestrial organic matter
      Available formats
      ×

Copyright

References

Hide All
Alexander, C. M. O'D., Fogel, M., Yabuta, H., & Cody, G. D. 2007, Geochim. Cosmochim. Acta, 71, 4380
Botta, O. & Bada, J. L. 2002, Surv. Geophys., 23, 411
Cody, G. D. 2000, in: Meyer-Ilse, W., Warwick, T., & Attwood, D. (eds.), X-ray Microscopy: Proceedings of the Sixth International Conference, (American Institute of Physics, Melville, NY)
Cody, G. D. & Alexander, C. M. O'D. 2005, Geochim. Cosmochim. Acta, 69, 1085
Cody, G. D., Alexander, C. M. O'D, & Tera, F. 2002 Geochim. Cosmochim. Acta, 66, 1851
Cody, G. D., et al. 2008, Meteorit. Planet. Sci., In Press
Cody, G. D., et al. , Earth Planet. Sci. Lett., submitted
Cronin, J. R., Pizzarello, S., & Cruikshank, D. P. 1988, in: Kerridge, J. F. & Mathews, M. S. (eds.), Meteorites and the Early Solar System, (Tucson: University of Arizona Press), p. 819
Cronin, J. R., Pizzarello, S., & Frye, J. S. 1987, Geochim. Cosmochim. Acta, 51, 299
Gardinier, A., Derenne, S., Robert, F., Behar, F., Largeau, C., & Maquet, J. 2000, Earth Planet. Sci. Lett. 184, 9
Hayes, J. M. 1967, Geochim. Cosmochim. Acta, 31, 1395
Hayatsu, R. & Anders, E. 1981, Topics. Curr. Chem., 99, 1
Kitajima, F., Nakamura, T., Taraoka, N., & Murea, T. 2002, Geochim. Cosmochim. Acta, 66, 163
Sandford, S. A., et al. 2006, Science, 314, 1720
Sephton, M. A. 2002, Natural Product Reports, 19, 292
Sephton, M. A. & Gilmour, I. 2002, ApJ, 540, 588
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed